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Univariate Data y1, y2, . . . , yn.
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The breakdown point of a scale estimator S is the smallest fraction

of observations that you need to replace to other values such that

S ↑ ∞ or S ↓ 0.
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The breakdown point of a scale estimator S is the smallest fraction

of observations that you need to replace to other values such that

S ↑ ∞ or S ↓ 0.

• Standard deviation: breakdown point= 1/n ≈ 0.
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The breakdown point of a scale estimator S is the smallest fraction

of observations that you need to replace to other values such that

S ↑ ∞ or S ↓ 0.

• Standard deviation: breakdown point= 1/n ≈ 0.

• IQR = 0.74 ∗ |y(⌊0.75∗n⌋) − y(⌊0.25∗n⌋)|

InterQuartileRange: breakdown point ≈ 25%
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The breakdown point of a scale estimator S is the smallest fraction

of observations that you need to replace to other values such that

S ↑ ∞ or S ↓ 0.

• Standard deviation: breakdown point= 1/n ≈ 0.

• IQR = 0.74 ∗ |y(⌊0.75∗n⌋) − y(⌊0.25∗n⌋)|

InterQuartileRange: breakdown point ≈ 25%

• MAD = 1.48 ∗ medi |yi − medj yj|

Median Absolute deviation: breakdown point ≈ 50%
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The influence that an observation at position y has on the scale S

when sampling from a distribution F :

IF (y;S, F ) = lim
ε↓0

S((1 − ε)F + ε∆y) − S(F )

ε
,

with ∆y a Dirac measure at y (see Hampel, 1986).

� The influence function is a local measure of robustness, the

breakdown point a global measure.

� The influence function should be bounded.
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In higher dimensions:

� Construction of robust estimators more challenging.

Ranking of the observations from smallest to largest is not

possible.

� Outlier detection becomes more difficult.



Scatterplot of bivariate data

Univariate Scale

estimation

Multivariate Scale

estimation

Multivariate data

MCD

Example

Properties

Algorithm

Example II

Starting Value

Intra-day Volatility of

Multivariate return

series

Other proposals for

jump-robust intra-day

volatility measures

Conclusions
9 / 55

−2 −1 0 1 2

−
2

−
1

0
1

2
3

X1

X
2

Scatterplot of X2 vs X1

Outliers for the correlation structure.

ρ = 0.980, ρ̂ = 0.774, ρ̂Robust = 0.978.
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The correlation outliers are not detected in the marginals !
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For a p-variate multivariate sample y1, . . . , yn:

� Let h ≤ n be the size of the optimal subsample. Typically

h ≈ n/2.

� For every subsample H of size h, compute

det(Cov{yi|i ∈ H}).

� The optimal subsample is given by

Ĥ = argminH det(Cov{yi|i ∈ H}).

� The MCD scale estimator is MCD = Cov{yi|i ∈ Ĥ}.

(Rousseeuw 1985)
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Brain and Body Weights for 65 Species of Land Animals
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The MCD estimator is a multivariate scale estimator S that is

� robust with respect to outliers, including correlation outliers.

� positive definite

� affine equivariant, meaning that

S(Ay1, . . . , Ayn) = AS(y1, . . . , yn) At.
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Moreover, the MCD is

1. Asymptotically normal (Lopuhaä 09, C and Haesbroek 99)

2. Fast to compute (Rousseeuw and Van Driessen 99)

� FAST-MCD algorithm, based on concentration steps.

� Aims at finding the “most concentrated” subsample of

size h.

� R-packages: robustbase (covMcd) or rrcov (CovMcd)
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(assume location equal to zero, for simplicity)

Let H0 be a starting subsample of size h. Perform Concentration

steps

1. (a) S0 = Cov{yi|i ∈ H0}.

(b) H1 collects the observations with the h smallest values of

yt
iS

−1
0 yi

2. (a) S1 = Cov{yi|i ∈ H1}.

(b) H2 collects the observations with the h smallest values of

yt
iS

−1
1 yi

3. ...
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How to find a starting value?
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1. Compute Spatial Sign Covariance matrix (Oja et al)

Σ̂ = 1
n

∑n

i=1
yi

‖yi‖|

yt

i

‖yi‖|
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1. Compute Spatial Sign Covariance matrix (Oja et al)

Σ̂ = 1
n

∑n

i=1
yi

‖yi‖|

yt

i

‖yi‖|

2. SVD-decomposition Σ̂ = UDU t. Denote uj , for

j = 1, . . . , p, the eigenvectors.

3. σ̂j = MAD(ut
jy1, . . . , u

t
jyn), for 1 ≤ j ≤ p

D̃ = diag(σ̂2
1 , . . . , σ̂

2
p) and Σ̂1 = UD̃U t.

4. H0 collects the h observations with smallest values of

yt
i(Σ̂1)

−1yi.

(see also Verdonck, Hubert, Rousseeuw, Ercim 09)
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EUR/USD and GBP/USD exchange rates returns on June 9, 2003.
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Aim: measure daily variance + daily correlation.
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� Denote p(s) the log of the price vector observed at time s

� Normalize the length of one day to 1

� We observe the price at every ∆ units of time (∆ small)

� The i-th intraday return vector at day t is

ri ≡ rt,i,∆ = p(t + i∆) − p(t + (i − 1)∆),

with i = 1, . . . , ⌊1/∆⌋.
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Log-price process:

dp(s) = µ(s)ds + Ω(s)dw(s),

with w(s) a Brownian motion, µ(s) is the drift process,

Σ(s) = Ω(s)Ω′(s) is the spot volatility/covariance process.
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Log-price process:

dp(s) = µ(s)ds + Ω(s)dw(s),

with w(s) a Brownian motion, µ(s) is the drift process,

Σ(s) = Ω(s)Ω′(s) is the spot volatility/covariance process.

RQCovt,∆ =
∑

i

rir
′
i

∆↓0
−→

∫ t

t−1

Σ(s)ds = ICovt

with ICovt the Integrated CoVariance at day t.
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But price jumps may exist
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BSM model with Jumps
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Price process:

dp(s) = µ(s)ds + Ω(s)dw(s) + κ(s)dq(s)

Jump process κ(s)dq(s) has two components:

� A count process q(s) governing jump occurrences

� A process generating the size of the jumps κ(s)
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Price process:

dp(s) = µ(s)ds + σ(s)dw(s) + κ(s)dq(s)

One has

RQCovt,∆ =
∑

i rir
′
i

∆↓0
−→

∫ t

t−1
Σ(s)ds +

∑jt

j=1 κjκ
′
j

∫ t

t−1
Σ(s)ds = ICovt = Integrated Covariance at day t

∑jt

j=1 κjκ
′
j = Jump contribution to Quadratic Covariation.

AIM: estimate ICovt
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Aim: disentangle the continuous component and the jump

component of the volatility
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Aim: disentangle the continuous component and the jump

component of the volatility

Why? Better volatility forecasts.

Some references:

Andersen, Bollerslev, Diebold, and Lapys, P. (2001, 2003)

Barndorff-Nielsen and Shephard (2004)

Andersen, Bollerslev, and Diebold (2007)



Motivation

Univariate Scale

estimation

Multivariate Scale

estimation

Intra-day Volatility of

Multivariate return

series

High frequency data

Notation

BSM Model

BSM model with Jumps

Motivation

Motivation

Example 1

ROWQCov

Weight function

Other proposals for

jump-robust intra-day

volatility measures
36 / 55

Aim: disentangle the continuous component and the jump

component of the volatility

� Univariate: several proposals, starting with the Realized

Bipower Variation (Barndorff-Nielsen and Shephard, 2004).
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Aim: disentangle the continuous component and the jump

component of the volatility

� Univariate: several proposals, starting with the Realized

Bipower Variation (Barndorff-Nielsen and Shephard, 2004).

� Multivariate: we propose the

Realized Outlyingness Weighted Quadratic Covariation

(ROWQCov)

Positive Definite + Affine Equivariant + Jump Robust
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� As an alternative to RQCovt =
∑

i
rir

′
i

� the Realized Outlyingness Weighted Quadratic Covariation

matrix is defined as

ROWQCovt = c

∑
i wirir

′
i∑

i wi

.
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� As an alternative to RQCovt =
∑

i
rir

′
i

� the Realized Outlyingness Weighted Quadratic Covariation

matrix is defined as

ROWQCovt = c

∑
i wirir

′
i∑

i wi

.

The weight wi = w(r′iΣ̂
−1
i ri), with w(·) is a descending

weight function.

Σ̂i is a robust estimate of the covariance of ri.
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Divide the day in local windows of length λ.

� Compute Σ̂i as the MCD of the returns belonging to the same

window as ri.
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Divide the day in local windows of length λ.

� Compute Σ̂i as the MCD of the returns belonging to the same

window as ri.

Select λ

(i) small enough to have locally constant scale

(ii) large enough to have enough observations in the window.

λ → 0,∆ → 0 and λ/∆ → ∞.
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Jumps are outliers with respect to the regular returns.

Weight for return i is wi = w(r′iΣ̂
−1
i ri) = w(di).

For ∆ ↓ 0:

� Return not affected by a jump:

di = r′iΣ̂
−1
i ri ∼ χ2

p

� Return affected by a jump:

di = r′iΣ̂
−1
i ri → ∞
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w(d) = min(1, χ2
p,1−α/d) ; we take α = 0.05.

! By letting α tend to zero, the efficiency gets arbitrarily close to 1.
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Let r1, . . . , rn be the return series within a day. Recall that

RVar =
1

n

n∑
i=1

r2
i

� Realized Bipower variation (BN, Shephard 2004):

RBPVar =
π

2

n∑
i=2

|ri||ri−1|
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Let r1, . . . , rn be the return series within a day. Recall that

RVar =
1

n

n∑
i=1

r2
i

� Realized Bipower variation (BN, Shephard 2004):

RBPVar =
π

2

n∑
i=2

|ri||ri−1|

� MinRV estimator of Andersen, Dobrev, Schaumburg (2008).

MinRV =
π

π − 2

n∑
i=2

min(|ri|, |ri−1|)
2

� ...
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RBPVar and MinRV are consistent estimators of daily integrated

variance in presence of jumps (∆ ↓ 0).

They do not require estimates of local scale, but

� RBPVar = π
2

∑
i |ri||ri−1|

Breakdown point = 1/n

� MinRV = π
π−2

∑
i min(|ri|, |ri−1|)

2

Breakdown point = 2/n
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If S2 is an estimator of the variance, then

Cov(X,Y ) =
1

4
{S2(X + Y ) − S2(X − Y )}

provides an estimator of covariance.



Bivariate case

Univariate Scale

estimation

Multivariate Scale

estimation

Intra-day Volatility of

Multivariate return

series

Other proposals for

jump-robust intra-day

volatility measures

Univariate Case

Robustness Properties

Influence Functions

Bivariate case

Bivariate tresholding

Bivariate tresholding

Simulation

Conclusions

47 / 55

If S2 is an estimator of the variance, then

Cov(X,Y ) =
1

4
{S2(X + Y ) − S2(X − Y )}

provides an estimator of covariance.

S2 =Realized Bipower Variation −→ Realized Bipower Covariation
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If S2 is an estimator of the variance, then

Cov(X,Y ) =
1

4
{S2(X + Y ) − S2(X − Y )}

provides an estimator of covariance.

S2 =Realized Bipower Variation −→ Realized Bipower Covariation

Matrix of pairwise covariances can be constructed from S, but this

will not result in a positive definite matrix.
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Let c be a threshold value.

If |ri,1| < c and |ri,2| < c, then ri is below the treshold.

Compute
∑

i rir
′
i but only over the ri below the threshold.

Gobbi and Mancini (2008)
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Let c be a threshold value.

If |ri,1| < c and |ri,2| < c, then ri is below the treshold.

Compute
∑

i rir
′
i but only over the ri below the threshold.

Not affine equivariant. Cannot detect correlation outliers
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Bivariate process (p(1)(s), p(2)(s)) where the log-returns have a

constant correlation equal to 0.91. We compare

� Realized Quadratic Covariation (RQCov)

� Realized Bipower Covariation (RBPCov)

� Realized Outyingness Weighted Quadratic Covariation

(ROWQCOV)



Simulation

Univariate Scale

estimation

Multivariate Scale

estimation

Intra-day Volatility of

Multivariate return

series

Other proposals for

jump-robust intra-day

volatility measures

Univariate Case

Robustness Properties

Influence Functions

Bivariate case

Bivariate tresholding

Bivariate tresholding

Simulation

Conclusions

51 / 55

Bivariate process (p(1)(s), p(2)(s)) where the log-returns have a

constant correlation equal to 0.91. Daily correlations over 150 days.
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Root Mean Squared Errors

Jumps per day κ∗: 0 1 1

Magnitude of jumps m: 0.5 1

5-minute returns (∆ = 1/288)

RQCov 0.084 1.413 2.804

RBPCov 0.096 0.242 0.339

ROWQCov 0.089 0.088 0.091
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Robustness to market micro-structure noise. Furthermore:

� Intraday periodicity in volatility

� Infrequent trading (zero returns)

� Nonsynchronous trading

� Large dimensions, small sample size

� Forecasting models

Boudt et al, Janus et al, Schulz-Mosler, Haysashi-Yoshida,

Cornelissen et al, Corsi et al. All at CFE 09.
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We propose an estimator of the continuous component of the

volatility of a multivariate price process in presence of jumps.

� Consistent and highly efficient

� Robust to jumps

� Affine equivariant and positive definite

� Implemented in the Ox package GARCH (www.garch.org).

R code is also available.

www.econ.kuleuven.be/christophe.croux/public
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