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Dynamic location model

yt = ω+ µt jt�1 + vt

= ω+ µt jt�1 + exp(λ)εt ,

µt+1jt = φµt jt�1 + κut ,

where εt is serially independent, standard t-variate and the conditional
score is

ut =

 
1+

(yt � µt jt�1)
2

νe2λ

!�1
vt ,

where vt = yt � µt jt�1 is the prediction error and ϕ = exp(λ) is the
(time-invariant) scale.
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Figure: Impact of ut for tν (with a scale of one) for ν = 3 (thick), ν = 10 (thin)
and ν = ∞ (dashed).
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Basic properties

ut = (1� bt )(yt � µt jt�1), (1)

where

bt =
(yt � µt jt�1)

2/ν exp(2λ)

1+ (yt � µt jt�1)
2/ν exp(2λ)

, 0 � bt � 1, 0 < ν < ∞, (2)

is distributed as beta(1/2, ν/2). The u0ts are IID(0, σ2u) and
symmetrically distributed.
The fact that bt has a beta distribution follows from the property of the
t-distribution
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Basic properties

The �lter may be generalized to:

µt+1jt = φ1µt jt�1 + ...+ φpµt�p+1jt�p + κ0ut + κ1ut�1 + ...+ κrut�r .

Such a �lter is denoted as QARMA(p, r). The full model will be called
DCS � t �QARMA(p, r). It corresponds to an unobserved component
signal plus noise model in which the signal is ARMA(p, r).
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Basic properties

In the Gaussian case ut = vt . If q is de�ned as max(p, r + 1), we may
write

yt = φ1yt�1 + ...+ φpyt�p + vt � (φ1 � κ0)vt�1 � ...� (φq � κq)vt�q ,

which is an ARMA(p, q) with MA coe¢ cients θi = φi � κi�1, i = 1, .., q.
The invertibility conditions apply to θi = φi � κi�1, i = 1, .., q rather than
to κi , i = 0, ...q. But more generally, for a tν�distribution with ν < ∞,

yt = φ1yt�1+ ...+φpyt�p + κ0ut�1+ ...+ κqut�q + vt �φ1vt�1� ...�φpvt�p

and the MA disturbances are not identically distributed as each is a
di¤erent combination of variables, ut and vt , which have di¤erent
(non-normal) distributions. In fact they do not all have the same
variances. The process is still ARMA(p, q), but the MA coe¢ cients are
not φi � κi�1, i = 1, .., q.
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Basic properties: moments

When µt+1jt is stationary, the location can be written as an in�nite
moving average,

µt jt�1 = ω+
∞

∑
j=1

ψjut�j ,
∞

∑
j=1

ψ2j < ∞, (3)

where ω = δ/(1� φ1 � ...� φp), so

yt = ω+
∞

∑
j=1

ψjut�j + vt .

The existence of moments of yt is not a¤ected by the dynamics.
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Basic properties: autocovariances

In the �rst -order model the form of the ACF is that of an ARMA(1,1)
since

ρν(1) =
�

κ +
ν

3+ ν

κ2φ

1� φ2

�
/
�

ν+ 1
ν� 2 +

ν

3+ ν

κ2

1� φ2

�
depends on κ and φ, but thereafter ρν(τ) = φρν(τ � 1), τ = 2, 3, ....
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Maximum likelihood estimation

The log-likelihood function for the DCS-t model is

ln L(ψ, ν) = T ln Γ ((ν+ 1) /2)� T
2
lnπ � T ln Γ (ν/2)

�T
2
ln ν� T ln ϕ� (ν+ 1)

2

T

∑
t=1
ln

 
1+

(yt � µt jt�1)
2

νϕ2

!
.

Maximization of the log-likelihood function with respect to the unknown
dynamic parameters in the vector ψ and the scale and shape parameters,
λ and ν, can be carried out by numerical optimization.
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Maximum likelihood estimation: information matrix

Let yt j Yt�1 have a tν-distribution with µt jt�1 generated by the �rst-order
model. Then, assuming that jφj < 1 and b < 1,

I

0@ ψ
λ
ν

1A =

264
ν+1
ν+3 exp(�2λ)D(ψ) 0 0

0 2ν
ν+3

1
(ν+3)(ν+1)

0 1
(ν+3)(ν+1) h(ν)/2

375 , (4)

where

D

0@ κ
φ
ω

1A =
1

1� b

2664
σ2u

aκσ2u
1�aφ 0

aκσ2u
1�aφ

κ2σ2u (1+aφ)
(1�φ2)(1�aφ)

0

0 0 (1�φ)2(1+a)
1�a

3775
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Maximum likelihood estimation: information matrix

a = φ� κ
ν

ν+ 3
,

b = φ2 � 2φκ
ν

ν+ 3
+ κ2

ν
�
ν3 + 10ν2 + 35ν+ 38

�
(ν+ 1) (ν+ 3) (ν+ 5) (ν+ 7)

,

Figure shows a plot of b against κ for φ = 0.9 and ν = 6. The admissible
range is slightly bigger than in the Gaussian case where it is
�0.1 < κ < 1.9.
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Figure: Plot of b against κ for φ = 0.9 and ν = 6
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Maximum likelihood estimation: Gaussian model

For a Gaussian model, b < 1 provided that φ� 1 < κ < φ+ 1.
The reduced form is the ARMA(1, 1) process

yt = φyt�1 + vt � θvt�1.

The condition for strict invertibility in the ARMA(1,1) model is jθj < 1
and since θ = φ� κ, invertibility ensures that b < 1. The condition θ 6= φ
is needed for identi�ability and this condition is equivalent to κ 6= 0.
When φ is known,

Var(eκ) = 1� b = 1� (φ� κ)2,

which is consistent with the standard MA(1) result, Var(eθ) = 1� θ2.
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Maximum likelihood estimation: Monte Carlo experiments

Parameter ML estimates for T = 1000

φ κ φ κ λ ω ν

0.8 0.5 RMSE 0.037 0.053 0.035 0.093 1.161
ASE 0.037 0.043 0.029 0.094 0.844

0.8 1.0 RMSE 0.250 0.067 0.031 0.144 0.920
ASE 0.240 0.045 0.029 0.147 0.844

0.95 0.5 RMSE 0.015 0.048 0.035 0.244 1.100
ASE 0.012 0.038 0.029 0.269 0.844

0.95 1.0 RMSE 0.012 0.064 0.031 0.387 0.882
ASE 0.010 0.043 0.029 0.484 0.844
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Application to US GDP

A Gaussian AR(1) plus noise model with a constant, was �tted to the
growth rate of US Real GDP, de�ned as the �rst di¤erence of the
logarithm, using the STAMP 8 package. The data were quarterly, from
1947(2) to 2012(1), and the parameter estimates were as follows:

eφ = 0.501, eσ2η = 7.62� 10�5, eσ2ε = 2.30� 10�5, eω = 0.0078.

There was little indication of residual serial correlation, but the
Bowman-Shenton statistic is 30.04, which is clearly signi�cant as the
distribution under the null hypothesis of Gaussianity is χ22. The
non-normality clearly comes from excess kurtosis, which is 1.9, rather than
from skewness.
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Application to US GDP

DCS-location-t model. The estimated degrees of freedom of 6.3 means
that the DCS �lter is less responsive to more extreme observations, such
as the fall of 2009(1).

Parameter κ φ λ ω ν

Estimate 0.520 0.497 -4.878 0.0079 6.303
Num SE 0.098 0.102 0.073 0.0009 2.310
ASE 0.090 0.140 0.057 0.0009 1.807
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Higher-order models and the state space form

The observation in the state space form is related to an m� 1 state
vector, αt , through a measurement equation,

yt=ω+z0αt+εt , t = 1, ...,T ,

where z is an m� 1 vector and εt is a serially uncorrelated disturbance
with E (εt ) = 0 and Var (εt ) = σ2ε . The transition equation is

αt+1= δ+Tαt + ηt , t = 1, ...,T .

The Kalman �lter can be written as a single set of recursions going
directly from αt jt�1 to αt+1jt , that is

αt+1jt = δ+Tαt jt�1 + ktvt , t = 1, ...,T ,

where vt = yt �ω�z0tαt jt�1 is the innovation and ft = z0Pt jt�1z+ σ2ε is
its variance. The gain vector, kt , is

kt = (1/ft )TPt jt�1z, t = 1, ...,T .
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Higher-order models and the state space form

Re-arranging the KF equations gives the innovations form

yt = ω+z0αt jt�1 + vt , t = 1, ...,T , (5)

αt+1jt = δ+Tαt jt�1+ktvt .

A general location DCS model may be set up in the same way as the
innovations form of a Gaussian state space model. The model
corresponding to the steady-state of (5) is

yt = ω+ z0αt jt�1 + vt , t = 1, ...,T , (6)

αt+1jt = δ+Tαt jt�1 + κut .
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Trend and seasonality

Stochastic trend and seasonal components may be introduced into UC
models for location. These models, called structural time series models,
are implemented in the STAMP package of Koopman et al (2009).
The Gaussian random walk plus noise or local level model is

yt = µt + εt , εt � NID(0, σ2ε ),
µt = µt�1 + ηt , ηt � NID(0, σ2η),

(7)

where E (εtηs ) = 0 for all t and s. The signal noise ratio is q = σ2η/σ2ε .
The range of κ in the steady-state innovations form is 0 < κ � 1. In this
case µt+1jt is an EWMA

µt+1jt = (1� κ)µt jt�1 + κyt . (8)

For a semi-in�nite sample

µt+1jt = κ
∞

∑
i=0
(1� κ)iyt�i (9)

and the weights on past observations sum to one.
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Trend and seasonality

For the DCS-t �lter

yt = µt jt�1 + vt , (10)

µt+1jt = µt jt�1 + κut .

and the initial value, µ1j0,is treated as an unknown parameter that needs
to estimated along with κ and ν.
Since ut = (1� bt )(yt � µt jt�1), re-arranging the dynamic equation in
(10) gives

µt+1jt = (1� κ(1� bt ))µt jt�1 + κ(1� bt )yt , t = 1, ...,T . (11)
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Trend and seasonality

Fitting a local level DCS model (initialized with µ2j1 = y1) to seasonally
adjusted monthly data on U.S. Average Weekly Hours of Production and
Nonsupervisory Employees: Manufacturing (AWHMAN) from February
1992 to May 2010 (220 observations) gave

eκ = 1.246 eλ = �3.625 eν = 6.35
with numerical (asymptotic) standard errors

SE (eκ) = 0.161(0.090) SE (eλ) = 0.120(0.062) SE (eν) = 1.630(1.991)
A drift term was initially included but it was statistically insigni�cant. The
value of b is 0.151. Although eκ is greater than one, the resulting �lter is
perfectly consistent with the properties of the series. Figure shows (part
of) the series together with the contemporaneous �lter, which for the
random walk is µt jt = µt+1jt . Unusually large prediction errors result in a
small value of κ(1� bt ) and most of weight in the �lter is assigned to
µt jt�1.
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Local linear trend

The DCS local linear trend �lter is

yt = µt jt�1 + vt , (12)

µt+1jt = µt jt�1 + βt jt�1 + κ1ut
βt+1jt = βt jt�1 + κ2ut .

The initialization β3j2 = y2 � y1 and µ3j2 = y2 can be used, but, as in the
local level model, initializing in this way is vulnerable to outliers at the
beginning. Estimating the �xed starting values, µ1j0 and β1j0, may be a
better option.
The model may be extended to include a stochastic seasonal.
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Seasonal

A �xed seasonal pattern may be modeled as

γt =
s

∑
j=1

γjzjt

where s is the number of seasons and the dummy variable zjt is one in
season j and zero otherwise. In order not to confound trend with
seasonality, the coe¢ cients, γj , j = 1, ..., s, are constrained to sum to zero.
The seasonal pattern may be allowed to change over time by letting the
coe¢ cients evolve as random walks. If γjt denotes the e¤ect of season j at
time t, then

γjt = γj ,t�1 +ωjt , ωt � NID(0, σ2ω), j = 1, ..., s.

Only one seasonal a¤ects the observations at a given time, that is
γt = γjt when season j is prevailing at time t.
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Seasonal

The requirement that the seasonal components evolve in such a way that

they always sum to zero, that is
s

∑
j=1

γjt = 0, is enforced by the restriction

that the disturbances sum to zero at each point in time. This restriction is
implemented by the correlation structure in

Var (ωt ) = σ2ω
�
I� s�1ii0

�
,

where ωt = (ω1t , ...,ωst )
0 , coupled with initial conditions requiring that

the seasonals sum to zero at t = 0.
It can be seen that Var (i0ωt ) = 0.

Andrew Harvey (Cambridge University) Volatility and Heavy Tails
November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB . For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 25

/ 107

In the state space form, the transition matrix is just the identity matrix,
but the z vector must change over time to accommodate the current
season. Apart from replacing z by zt , the form of the KF remains
unchanged. Adapting the innovations form to the DCS observation driven
framework gives

yt = z0tαt jt�1 + vt (13)

αt+1jt = αt jt�1 + κtut ,

where zt picks out the current season, γt jt�1, that is γt jt�1 = zt«αt jt�1.
The only question is how to parameterize κt .
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The seasonal dummies in the UC model are constrained to sum to zero
and the same is true of their �ltered estimates. Thus i0κt = 0 in the
Kalman �lter and this property should carry across to the DCS �lter.
If κjt , j = 1, .., s, denotes the j � th element of κt in (13), then in season j
we set κjt = κs , where κs is a non-negative unknown parameter, while

κit = �κs/(s � 1), i 6= j .

The amounts by which the seasonal e¤ects change therefore sum to zero.
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Seasonal

The seasonal recursions can be combined with the trend �ltering equations
of (12) in order to give a structure similar in form to that of the Kalman
�lter for the stochastic trend plus seasonal plus noise model, sometimes
known as the �basic structural model�. Thus

yt = µt jt�1 + γt jt�1 + vt , (14)

where µt jt�1 is as in (12).
The �lter can be initialized by regressing the �rst s + 1 observations on a
constant, time trend and seasonal dummies constrained so that the
coe¢ cients to sum to zero.
Alternatively, the initial conditions at time t = 0 are estimated by treating
them as parameters.
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Application to rail travel

Figure shows the logarithm of National Rail Travel, de�ned as the number
of kilometres traveled by passengers.
An unobserved components model was �tted to this series using the
STAMP 8 package of Koopman et al (2009).
Trend, seasonal and irregular components were included but the model
was augmented with intervention variables to take out the e¤ects of
observations that are known to be unrepresentative.
The intervention dummies were: (i) the train driver strikes in 1982(1,3);
(ii) the Hat�eld crash and its aftermath, 2000(4) and 2001(1); and (iii)
the signallers strike in 1994(3).
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Fitting a DCS model with trend and seasonal, that is (14), avoids the need
to deal explicitly with the outliers. The ML estimates for the parameters in
a model with a random walk plus drift trend, that is

µt+1jt = µt jt�1 + β+ κ1ut ,

are

eκ1 = 1.421(0.161) eκs = 0.539 (0.070) eλ = �3.787 (0.053)eν = 2.564 (0.319) eβ = 0.003 (0.001)
with initial values

eµ = 2.066(0.009)eγ1 = �0.094(0.007) eγ2 = �0.010(0.006) eγ3 = 0.086(0.006)
The last seasonal is eγ4 = 0.018; it has no standard error (SE) as it was
constructed from the others.
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Figure: Trends in National Rail Travel from UC and DCS models
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The outliers, removed by dummies in the UC model, show up clearly in the
irregular. (The Bowman-Shenton statistic is 137.82 indicating a massive
rejection of the null of Gaussianity.) In the score series the outliers are
downweighted. As a result, the autocorrelations for the score are slightly
bigger than those of the residuals as they are not weakened by aberrant
values; see Figure The Box-Ljung Q(12) statistic is 19.78 for the score and
12.40 for the residuals. If it can be assumed that only the number of �tted
dynamic parameters a¤ects the distribution of the Box-Ljung statistic, its
distribution under the null hypothesis of correct model speci�cation is χ210,
which had a 5% critical value of 18.3. Thus the scores reject the null
hypothesis, albeit only marginally, while the residuals do not. Having said
that, the score autocorrelations do not exhibit any clear pattern and it is
not clear how the dynamic speci�cation might be improved.

Andrew Harvey (Cambridge University) Volatility and Heavy Tails
November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB . For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 35

/ 107

ACF­v ACF­u

0 5 10 15 20

­0.75

­0.50

­0.25

0.00

0.25

0.50

0.75

1.00
ACF­v ACF­u

Figure: Residual correlograms for irregular and score residuals from DCS-t model
�tted to National Rail Travel (lines are � 1/

p
T )

Andrew Harvey (Cambridge University) Volatility and Heavy Tails
November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB . For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 36

/ 107



Explanatory variables

The location parameter may depend on a set of observable explanatory
variables, denoted by the k � 1 vector wt , as well as on its own past values
and the score. The model with a stochastic trend can be set up as

yt = µ†
t pt�1 +w

0
tγ+ νt ,

where
µ†
t+1pt = φµ†

t pt�1 + κut
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Corollary
Assume that the explanatory variables are weakly stationary with mean µw
and second moment Λw and are strictly exogenous in the sense that they
are independent of the ut́s in all time periods, that is E (wtus ) = 0 for all
t, s = 1, ..,T . The information matrix is

I

0@ κ
φ
γ

1A =
σ2u

k2(1� b)

24 A D 0
D B 0
0 0 Cw

35 ,
where A,B and D,E are as before while

Cw = (1+ φ2)Λw � 2φΛw (1) +
2a(1� φ)2

1� a µwµ0w ,

with Λw (1) = E (wtw0t�1) = E (wt�1w
0
t ).
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Corollary

When µ†
t pt�1 is known to be a random walk with drift, β, as in (??), and

µ†
1p0 is �xed and known, the information matrix is as in (4) but with

D

0@ κ
γ
β

1A =
1

1� b

24 σ2u 00 00

0 C∆w µ∆w
0 µ0∆w 1

35 ,
where µ∆w = E (∆wt ) and C∆w = E (∆wt∆w0t ). It is assumed that b < 1
and C∆w is positive de�nite.
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The �rst di¤erences of the explanatory variables must be weakly stationary
but their levels may be nonstationary. It follows from the above result that
the covariance matrix of the limiting distribution of

p
T eγ is

Var(eγ) =  2κ
ν

ν+ 1
� κ2

ν
�
ν3 + 10ν2 + 35ν+ 38

�
(ν+ 1)2 (ν+ 5) (ν+ 7)

!
e2λ(C∆w �µ∆wµ0∆w )

�1

In principle, the above Corollary may be extended to models where
seasonals are included.
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Application to rail travel

Potential explanatory variables for the rail travel series are: (i) Real GDP (
in £ 2003 prices), (ii) Real Fares, obtained by dividing total revenue by the
number of kilometres travelled and the retail price index (RPI), and (iii)
Petrol and Oil index (POI), divided by RPI. The fares series was smoothed
by �tting a univariate UC model,
Fitting an unobserved components time series model using STAMP gave
the following estimates for the coe¢ cients of the logarithms of the
explanatory variables:

LGDP = 0.716(0.267) Lfare = �0.416(0.245) LPOI = 0.050(0.065)

All the estimates are all plausible. The coe¢ cient of the petrol index is not
statistically signi�cant at any conventional level, but at least it has the
right sign. The appendix shows the print-out of the full set of results.
Failure to deal with outliers in a time series regression can lead to serious
distortions and this is well-illustrated by the rail series when the
intervention variables are not included. In particular the fare estimate is
plus 0.36.
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Fitting a DCS-t model gave the following results:

eκ1 = 2.212 eκs = 0.771 eλ = �4.059eν = 2.070 eβ = 0.0004
with initial values eµ = �6.162, eγ1 = �0.084, eγ2 = �0.007 andeγ3 = 0.070.
The coe¢ cients of the explanatory variables were:

LGDP = 0.734 Lfare = �0.427 LPOI = 0.056

The Box-Ljung Q(12) statistic is 5.30 for the score and 16.12 for the
residuals. This result is surprising because in the univariate model the
Q � statistic for the score was bigger than that of the residuals.
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Figure shows the stochastic trend with a constant factor added so that it
is at a level comparable with that of the series. A good deal, but by no
means all, of the growth from the mid-nineties is due to the increase in
GDP. The continued fall in rail travel after the economy had moved out of
the recession of the early nineties is explained by the fact that fares
increased sharply in 1993 in anticipation of rail privatisation and continued
to increase till 1995.
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Figure: Adjusted level (trend) in rail travel when explanatory variabes are taken
into account.
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Smoothing

In a linear Gaussian model, the smoothed estimate is αt jT , the conditional
expectation of αt , and hence its MMSE, based on all the observations in
the sample. For a DCS model the smoothing �lter is de�ned by a
symmetry argument rather than being derived as an optimal estimate.
However it can also be rationalized by an argument based on the
conditional mode of the posterior distribution of the state. Indeed this
signal extraction interpretation probably provides a more solid foundation
for DCS models than the case set out earlier.
The �ltering equations in a DCS model have the same form as the Kalman
�lter in a corresponding linear Gaussian UC model. The KF de�nes an
implicit set of weights for current and past observations. Similarly the
backward recursive equations in a �xed interval smoother for a linear
Gaussian UC model implicitly de�ne a set of weights for all observations.
Smoothing in a DCS model amounts to using a set of smoothing weights
that match the weights for the DCS �lter.
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Smoothing

In a simple linear Gaussian UC model there are explicit formulae for these
weights; see Whittle (1983, Chapters 6 and 7). For the AR(1) plus noise
model, the weights are a function of the parameter θ in the ARMA(1,1)
reduced form. To be speci�c, the weights for the �lter in a semi-in�nite
sample,

µt+1jt =
∞

∑
j=0
wjyt�j ,

are
wj = (φ� θ)θj , j = 0, 1, 2, . . . ., (15)

For the smoother in a doubly in�nite sample,

µt jT =
∞

∑
j=�∞

wjyt�j , where (16)

wj =
(1+ θ2)φ� (1+ φ2)

(1� θ2)φ
θjj j, j = 0,�1,�2, . . .
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Smoothing

The expressions for the weights may be modi�ed to take account of a
�nite sample. More generally the weights for �nite samples can be
computed numerically from the state space form of any linear model using
the algorithm in Koopman and Harvey (2003). There will be a di¤erent
set of weights for each value of t from t = 1 to T , although those in the
middle will typically be very close. Figure shows the weights four periods
from the end for a random walk plus noise model with signal-noise ratio,
q, equal to 0.1.
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Figure: Smoothing weights at t = T � 4 for a random walk plus noise model
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Smoothing

Smoothing DCS models is complicated by the fact that the �lter is driven
by a nonlinear function of the observations that is itself dependent on the
output of the �lter. The DCS �lter for the �rst-order model can be written
as

µt+1jt = (φ� κ)µt jt�1 + κyt (µt jt�1), (17)

showing that the weighting of the pseudo-observations,

yt (µt jt�1) = ut + µt jt�1, t = 1, ...,T , (18)

is the same as in the KF. For the conditional t�distribution,

yt (µt jt�1) = (1� bt )yt + btµt jt�1, t = 1, ...,T .

Note that bt depends on µt jt�1 : hence the notation yt (µt jt�1).
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Smoothing

Finite sample two-sided smoothing weights can be obtained by computing
them for the corresponding UC Gaussian model, that is one with

q = φ(1+ (φ� κ)2)/(φ� κ)� 1� (φ� κ)2, (19)

using the algorithm in Koopman and Harvey (2003). These weights can be
applied to pseudo-observations

yt (µt jT ) = (1� bt jT )yt + bt jT µt jT , t = 1, ...,T , (20)

where

bt jT =
(yt � µt jT )

2/ν exp(2λ)

1+ (yt � µt jT )
2/ν exp(2λ)

. (21)

Since the yt (µt jT )
0s depend on the µ0t jT s, the weights would need to be

applied repeatedly until there is convergence.
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Smoothing

The state space smoothing recursions, as given in Durbin and Koopman
(2012). may be adapted to give a set smoothed values, µt jT , t = 1, ...,T ,
which are the same as those given by applying the weights from the
equivalent UC model to the pseudo-observations yt (µt jT ). These
recursions are also based on repeatedly revising the values of the b0ts to
re�ect the latest µ0t jT s.
The DCS �lter is �rst run and then followed by a backward smoother
(which will usually have time-invariant system matrices) in which the
innovations are replaced by the scores, ut , t = 1, ...,T . The forward
recursion gives smoothed values of the signal, that is a set of µ0t jT s. The
DCS �lter is then run again with the score variable evaluated at
bt jT (µt jT ), as in (21), that is

ut (µt jT ) = (1� bt jT )(yt � µt jt�1), t = 1, ...,T . (22)

The smoother is then run with the ut (µt jT )
0s and the whole process of

�ltering and smoothing repeated until the µ0t jT s converge.
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In the �rst-order DCS�t model the backward �lter becomes

rt�1 = (φ� κ)rt + (1� κ/φ)ut , t = T , ..., 2,

where ut is repeatedly updated as ut (µt jT ) after the �rst iteration. The
forward recursion is either

µt jT = µt jt�1 + κ(rt + ut (µt jT )/φ), t = 1, ...T ,

where the smoothed signal in ut (µt jT ) is from the previous round, or

µt+1jT = µt jT + qrt , t = 1, ...,T � 1,

with q given by (19). Since the estimate of the constant, ω, does not
change, neither does the initial value, µ1j0. The same is true in the local
level when µ1j0 is treated as a �xed parameter.
Generalization of the above recursive method, or indeed the method based
on weighting pseudo-observations, appears not to be straightforward. The
di¢ culty lies in �nding a UC model which yields the same �lter as the
DCS model.
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Conditional mode estimation and the score

In an unobserved components model, the distribution of the signal
conditional on the observations can be written as the joint PDF of the
observations and signal divided the PDF of the observations. Taking
logarithms gives

ln p(µ j y) = ln p(µ, y)� ln p(y), (23)

and maximizing ln p(µ j y) with respect to µ gives the conditional modes
of the series of signals. For a linear Gaussian state space model, these
modes are the same as the conditional expectations of the signals. Hence
they are the smoothed estimates. Note that the second term in (23), that
is ln p(y), can be ignored, and so ln p(µ j y) may be replaced by the more
straightforward expression ln p(y, µ) = ln p(y j µ) + ln p(µ).
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Conditional mode estimation and the score

Consider a model in which the PDF of yt given µt is p(yt j µt ) and
dynamic equation for µt is a Gaussian AR(1). Then

ln p(y, µ) = �
T

∑
t=1
p(yt j µt )�

1
2σ2η

T

∑
t=2

�
µt � φµt�1

�2� 1
2p1j0

�
µ1 � µ1j0

�2
.

When µt is stationary, µ1j0 = 0 and p1j0 = σ2η/(1� φ2). When µt is a
random walk initialized with a di¤use prior, p1j0 ! ∞ and the last term
disappears.
For a linear Gaussian model p(yt j µt ) = (yt � µt )

2/ 2σ2ε . Di¤erentiating
ln p(y, µ) with respect to each element of µ then gives a set of equations,
which, when set to zero and solved, yield the minimum mean square error
estimates of the µ0ts. These smoothed estimates may be computed
e¢ ciently by the smoothing recursions given in the last sub-section but
one.
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Conditional mode estimation and the score

More generally, for any conditional distribution, p(yt j µt ), with a
continuous �rst derivative,

∂ ln p(µ j y)
∂µ1

= �∂p(y1 j µ1)

∂µ1
+

φ

σ2η
(µ2 � φµ1)�

µ1
p1j0

(24)

∂ ln p(µ j y)
∂µt

= �∂p(yt j µt )

∂µt
� 1

σ2η

�
µt � φµt�1

�
+

φ

σ2η

�
µt+1 � φµt

�
, t=2, . . . ,T � 1,

∂ ln p(µ j y)
∂µT

= �∂p(yt j µT )

∂µT
� 1

σ2η

�
µT � φµT�1

�
.

The conditional modes satisfy the equations obtained by setting these
derivatives equal to zero. Durbin and Koopman (2012, pp. 252-3) discuss
optimality properties of the conditional modes as estimates of the µ0ts.
The �rst terms on the right hand side of the equations in (24) are the
scores at time t. When evaluated at the conditional modes they are
proportional to the ut (µt jT )

0s. Working back to the �lter, there is now a
rationale for the conditional score, ut = u(µt jt�1).
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Conditional mode estimation and the score

Summing the equations in (24) when they are evaluated at the conditional
modes gives the following result when φ = 1, because the terms involving
the �rst di¤erences of the µ0ts cancel each other out.

Proposition
When µt is a random walk initialized with a di¤use prior, the scores sum
to zero when evaluated at the conditional modes, that is

T

∑
t=1
ut (µt jT ) = 0.

De Rossi and Harvey (JE, 2009) show that this result holds generally for
stochastic trends, such as the integrated random walk. The formal
requirement is that for the transition matrix in (??), the �rst column of
T� I consists solely of zeroes.
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Forecasting

The one-step ahead predictive distribution is given directly by the model.
The concern here is with multi-step prediction.
When µt+1jt is of the QARMA(p, r) form the predictor, µT+`pT , is usually
best computed recursively, as in an ARMA model. Thus for ` = 2, 3, ..,

µT+`pT = φ1µT+`�1pT + ...+φpµT+`�p pT + κ0uT+`�1pT + ...+ κruT+`�r pT ,

where µT+j pT is known for j � 1, uT+j pT is known for j � 0 and
uT+j pT = 0 for j > 0. A recursion of this form can be used even if µt+1jT
is nonstationary.
MSE (µT+`jT ) is computed in a similar way to an ARMA model
The predictor of the observation at time T + ` is

yT+`jT = µT+`jT , ` = 1, 2, 3, ...,

Provided that ν > 2, yT+`jT is the MMSE `� step ahead forecast of
yT+` with

MSE (yT+`jT ) = MSE (µT+`jT ) + Var(vT+`), ` = 1, 2, .
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Forecasting

Multi-step predictions and associated MSEs can be similarly computed
using the state space form.

**
A formula for the multi-step conditional distribution cannot be found
unless the model is Gaussian. However, simulation is a viable option. The
error associated with the predictor yT+`jt is

`�1
∑
j=1

ψjuT+`�j + vT+`, ` = 2, 3, ...

and uT+j , j = 1, .., `� 1, and vT+` can be generated from independent
t�distributions.
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Components and long memory

Fractionally integrated white noise is

(1� L)dyt = εt , t = 1, ...,T , (25)

where d need not be an integer, as it would be for a simple di¤erencing
operation. The model may be expressed as an in�nite autoregression by
expanding the operator as

(1� L)d = 1� dL� 1
2
d(1� d)L2 � ..., d > �1.

Conversely a moving average is obtained from (1� L)�d .
The model is stationary if d < 1/2, in which case the autocorrelations are

ρ(τ) =
Γ(1� d)Γ(τ + d)
Γ(d)Γ(τ + 1� d) , τ = 0, 1, 2, .....

When d > 0, the observations exhibit long memory. The ACF decays
hyperbolically the ACF of the AR(1) decays exponentially.
Andrew Harvey (Cambridge University) Volatility and Heavy Tails

November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB . For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 59
/ 107

Components and long memory

One interpretation of long memory is as an approximation to a mixture of
components. Suppose that the location is the sum of two unobserved
�rst-order autoregressions, that is

yt = ω+ µ1,t + µ2,t + εt , εt � NID(0, σ2i ) (26)

µi ,t = φiµi ,t�1 + ηit , ηit � NID(0, σ2i ), i = 1, 2.

Figure 10 shows ACF of a model in which φ1 = 0.5 and σ21 = 37.5 while
φ2 = 0.99 with σ22 = 1. As can be seen, the ACF of this model is close to
that of the long memory model.
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Figure: Long memory (solid line) and two AR(1)�s. Thin dashed line is an AR(1)
with same r(1) as long memory.
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Components and long memory

The corresponding DCS model is

yt = ω+ µ1,t jt�1 + µ2,t jt�1 + vt (27)

µi ,t+1jt = φiµi ,t jt�1 + κiut , i = 1, 2.

where φ1 6= φ2. Note that ut appears in both dynamic equations, just as
the prediction error does in the innovations form.
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Skew distributions

Skewness can be introduced into a t-distribution in such a way that most
of the theory set out in this chapter for the DCS location model is
unchanged.
In the method of Fernandez and Steel (1998) a standardized probability
density function, f (.), which is unimodal and symmetric about zero, is
used to construct a skewed probability density function

f (εt jγ) =
2

γ+ γ�1

�
f
�

εt
γ

�
I[0,∞)(εt ) + f (εtγ)I(�∞,0)(εt )

�
,

where I[0,∞)(εt ) is an indicator variable, taking the value one when εt � 0
and zero otherwise, and γ is a parameter in the range 0 < γ < ∞.
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Skew distributions

Symmetry is attained when γ = 1, whereas γ < 1 and γ > 1 produce left
and right skewness respectively.
The uncentered moments of εt are

E (εct ) = Mc
γc+1 + (�1)c/γc+1

γ+ γ�1
,

where
Mc = 2

Z ∞

0
zc f (z)dz = E (jz jc ).

Hence
E (εt ) = µε = M1(γ� 1/γ),

which is not zero unless γ = 1
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Figure: Skew-t with γ = 0.8 and normal distribution (dashed)
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Skew-t dynamic location model

When the location changes over time, the score is proportional to

ut = u+t I[0,∞)(yt � µt jt�1) + u
�
t I(�∞,0)(yt � µt jt�1), t = 1, ...,T , (28)

where ut = u+t and ut = u
�
t are as in ut = (1� bt )(yt � µt jt�1), but

with bt de�ned as

b+t =
(yt � µt jt�1)

2/ν exp(2λ)

1+ (yt � µt jt�1)
2/νγ2 exp(2λ)

or b�t =
(yt � µt jt�1)

2/ν exp(2λ)

1+ (yt � µt jt�1)
2/νγ�2 exp(2λ)

depending on whether yt � µt jt�1 is non-negative (b
+
t ) or negative (b

�
t ).

The following result follows because the properties of u+t and u
�
t do not

depend on the sign of yt � µt jt�1, since they are both linear functions of
beta variables with the same distribution.
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Skew-t dynamic location model

Corollary

The variables b+t and b
�
t are both distributed as beta(1/2, ν/2) and ut ,

de�ned in (28), is IID(0, σ2u).

When γ is known, the information matrix for the skew-t model is exactly
as in the symmetric case. The reason is simple: the distribution of the
score and its �rst derivative depend on IID beta variates in exactly the
same way as in the symmetric case. When γ is estimated, the asymptotic
covariance matrix of the ML estimators of ψ,λ and ν is una¤ected as
these estimators are independent of the ML estimator of γ.
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DCS models for scale: Beta-t-EGARCH

yt = εt exp(λt pt�1)

where, for example,
λt+1jt = φλt pt�1 + κut

More generally λt+1jt may be a higher order process of the QARMA(p, r)
form. First-order is (1, 0).

Theorem
For the Beta-t-EGARCH model λt pt�1 is covariance stationary, the
moments of the scale, exp (λt pt�1/2) , always exist and the m� th
moment of yt exists for m < ν. Furthermore, for ν > 0, λt pt�1 and
exp (λt pt�1/2) are strictly stationary and ergodic, as is yt .

The odd moments of yt are zero because the distribution of εt is
symmetric.
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Beta-t-EGARCH: moments

The even moments of yt in the stationary Beta-t-EGARCH model are
found from the MGF of a beta:

E (ymt ) = E (jεt jc )emγ/2
∞

∏
j=1
e�ψjm/2βν(ψjm/2), m < ν.

=
νm/2Γ(m2 +

1
2 )Γ(

�m
2 + ν

2 )

Γ( 12 )Γ(
ν
2 )

emγ/2
∞

∏
j=1
e�ψjm/2βν(ψjm/2)

where

βν(a) = 1+
∞

∑
k=1

 
k�1
∏
r=0

1+ 2r
ν+ 1+ 2r

!
ak (ν+ 1)k

k !
, 0 < ν < ∞.

is Kummer´s (con�uent hypergeometric) function.
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Beta-t-EGARCH: moments

Proof: The �rst term in

E (jyt jc ) = E (jεt jc )E
�
eλt pt�1c

�
, (29)

is a property of the t-distribution. The last term depends on a linear
combination of independent beta variates so

E
�
eλt pt�1m

�
= emω

∞

∏
j=1
e�ψjmE

�
eψj (ν+1)bt�jm

�
,

and the expectations evaluated by setting a = ψjm in

βν(a) = E
�
ea(ν+1)b

�
, which is a special case of the MGF of a beta

variable. *
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Beta-t-EGARCH: moments

It follows from Jensen�s inequality that

E (exp(λt pt�1m)) � exp(E (λt pt�1m) = exp(mω).

Thus the expected value of a time-varying scale, exp(λt pt�1), is greater
than exp(ω). On comparing each term in the power series expansion of
e�a with the corresponding term in βν(a), it can be seen that
e�ψjmβν(ψjm) � 1 for �nite ψj , with the equality holding when ψj = 0.

For values of ψj likely to arise in practice, e
�ψjmβν(ψjm) is close to one.

Note also that βν(�a) < βν(a) for a 6= 0.

Andrew Harvey (Cambridge University) Volatility and Heavy Tails
November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB . For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 71

/ 107

Beta-t-EGARCH: moments

The serial correlation in scale means that, by Jensen�s inequality, the
kurtosis in yt exceeds that of εt . For a tν� distribution, the kurtosis is
κν = 3 (ν� 2) / (ν� 4) , ν > 4, and the kurtosis of yt is given by κνKν,
where Kν is obtained as follows.
The factor by which the kurtosis increases in the stationary
Beta-t-EGARCH model is

Kν =
E
�
e4λt pt�1

�
[E (e2λt pt�1)]

2 =

 
∞

∏
j=1

βν(2ψj )

!�2 ∞

∏
j=1

βν(4ψj ), ν > 4.
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Beta-t-EGARCH: Autocorrelation functions of powers of
absolute values

The autocorrelations of the squared observations are given by analytic
expressions for GARCH models.
But the ACFs can of Beta-t-EGARCH be computed for the absolute
observations raised to any positive power; see Harvey and Chakravary
(2009).
Heavy-tails tend to weaken the autocorrelations.
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Forecasts

The standard EGARCH model readily delivers the optimal `�step ahead
forecast - in the sense of minimizing the mean square error - of future
logarithmic conditional variance. Unfortunately, as Andersen et al (2006, p
804-5, p 810-11) observe, the optimal forecast of the conditional variance,
that is ET (σ2T+`pT+`�1), where ET denotes the expectation based on
information at time T , generally depends on the entire `�step ahead
forecast distribution and this distribution is not usually available in closed
form for EGARCH.
The exponential conditional volatility models overcome this di¢ culty
because analytic expressions for the conditional scale and variance can be
obtained in the same way as expressions were obtained for higher order
moments.
Expressions for `� step ahead volatility and volatility of volatility.
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Forecasts

Full predictive distribution needs to be simulated - Needed for VaR and
expected shortfall.In the Beta-t-EGARCH model, the distribution of yT+`,
` = 2, 3, ...., conditional on the information at time T , is the distribution
of

yT+` = εT+` exp(λT+`pT+`�1) = εT+`

"
`�1
∏
j=1
eψj ((ν+1)bT+`�j�1)

#
eλT+`pT .

An analogous expression can be written down for Gamma-GED-EGARCH.
Hence it is not be di¢ cult to simulate the multi-step predictive
distribution of the scale and observations; see the discussion in Andersen
et al (2006, pp. 810-811). The term in square brackets is made up of
`� 1 independent beta variates and this variable can be combined with a
draw from a t-distribution, εT+`. The composite variable so obtained
depends only on the parameters that determine the ψ0j s. Multiplying by
exp(λT+`pT ) gives yT+`.
The tails of the predictive distribution of yT+` become heavier as `
increases.
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Asymptotic theory for Beta-t-EGARCH

The u0ts are IID. Di¤erentiating gives

∂ut
∂λ

=
�(ν+ 1)y2t ν exp(λ)
(ν exp(λ) + y2t )2

= �(ν+ 1)bt (1� bt ),

and since, like ut , this depends only on a beta variable, it is also IID. All
moments of ut and ∂ut/∂λ exist.
The condition b < 1 implicitly imposes constraints on the range of κ.
But the constraint does not present practical di¢ culties.
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Asymptotic theory for Beta-t-EGARCH

Proposition
For a given value of ν, the asymptotic covariance matrix of the dynamic
parameters has

a = φ� κ
2ν

ν+ 3

b = φ2 � 4φκ
ν

ν+ 3
+ κ2

12ν(ν+ 1)
(ν+ 5)(ν+ 3)

c = κ
4ν(1� ν)

(ν+ 5)(ν+ 3)
.
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Asymptotic theory for Beta-t-EGARCH

Var
� eψeν

�
=

26664
2ν

ν+3D(ψ)
1

(ν+3)(ν+1)

0@ 0
0
1�φ
1�a

1A
1

(ν+3)(ν+1)

�
0 0 1�φ

1�a

�
h(ν)/2

37775
�1

,

where D(ψ) was de�ned in Lecture 1, as (), and where

h(ν) =
1
2

ψ0 (ν/2)� 1
2

ψ0 ((ν+ 1)/2)� ν+ 5
ν (ν+ 3) (ν+ 1)

,

with ψ0 (.) being the trigamma function; see, for example, Taylor and
Verblya (2004) and Lin and Wang (2009).
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Parameter (a) ML estimates for T=1000

φ κ RMSE(φ) ASE(φ) RMSE(κ) ASE(κ) RMSE(ω) ASE(ω) RMSE(ν) ASE(ν)
0.90 0.05 0.075 0.052 0.016 0.016 0.053 0.049 1.357 0.844

0.10 0.038 0.032 0.018 0.017 0.065 0.069 1.406 0.845
0.95 0.05 0.058 0.024 0.014 0.013 0.069 0.069 1.334 0.844

0.10 0.019 0.017 0.016 0.015 0.098 0.109 1.332 0.846
0.99 0.05 0.010 0.006 0.010 0.010 0.198 0.226 1.371 0.845

0.10 0.008 0.005 0.013 0.013 0.312 0.428 1.356 0.846
Table 4.1 Monte Carlo results based on 1000 replications for �rst-order
Beta-t-EGARCH with ν = 6.
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Asymptotic theory for Beta-t-EGARCH: unit root

When φ is taken to be unity in the �rst-order model,

λt+1pt = δ+ λt pt�1 + κut , t = 1, ...,T .

When λ1p0 is �xed and known, it follows from the general Proposition
that, provided that b < 1, the limiting distribution of

p
T (eκ� κ, eδ� δ)0 is

multivariate normal with mean zero and covariance matrix I�1(eκ,eδ)
When δ is set to zero,

I (eκ) = σ4u

2κσ2u � κ2E [(∂ut/∂λ)2]
.

For small κ, I (eκ) ' σ2u/2κ. Thus for a tν�distribution

SE (eκ) ' qκ(ν+ 3)/νT
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When the initial value, λ1p0, is treated as parameter, ω, to be estimated, it
appears from the simulation evidence in Table 4.2 that the asymptotic
distribution of the ML estimator of κ is unchanged. The approximate
asymptotic standard errors for κ = 0.05 and 0.10 are 0.00274 and 0.00387
respectively and these are almost exactly the same as the �gures in Table
4.2.

Parameter Mean and SD for T=10,000

ω κ Mean(ω) SD(ω) Mean(κ) SD(κ)
0 0.05 0.014 0.309 0.050 0.0027
0 0.10 0.011 0.435 0.100 0.0038

Table 4.2 Monte Carlo results for Beta-t-EGARCH with φ known to be 1
and ν known to be 6.
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If φ is estimated unrestrictedly, it will have a non-standard distribution. (A
reasonable conjecture is that the limiting distribution of Teφ can be
expressed in terms of functionals of Brownian motion, as is the case when
a series is a random walk and observations are regressed on their lagged
values.) The simulations reported in Table 4.3, where ω, φ and κ are all
unknown parameters, indicate that the distribution of eκ is unchanged,
which is to be expected since, unlike eφ, eκ is not superconsistent. (The
parameter ω is not estimated consistently but this should not a¤ect the
asymptotic distribution of eφ and eκ.)
Parameter Mean and SD for T=10,000

ω κ Mean(ω) SD(ω) Mean(κ) SD(κ) Mean(φ) SD(φ)
0 0.05 0.012 0.313 0.050 0.0027 1.000 0.00033
0 0.10 0.020 0.435 0.100 0.0038 1.000 0.00031
Table 4.3 Monte Carlo results for Beta-t-EGARCH with φ = 1, but

estimated, and ν known to be 6.
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Gamma-GED-EGARCH

The log-likelihood function for a Gamma-GED-EGARCH model is

ln L(λ, υ) = �T
�
1+ υ�1

�
ln 2� T ln Γ(1+ υ�1)�

T

∑
t=1

λt pt�1

�1
2

T

∑
t=1
jyt exp(�λt pt�1)jυ .

The distribution of the score

ut = (υ/2) jyt/ exp(λt pt�1)jυ � 1, t = 1, ...,T .

is gamma, as is that of

∂ut/∂λt pt�1 = �(υ2/2) jyt jυ / exp(λt pt�1υ) = �(υ2/2)g
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Gamma-GED-EGARCH

For the stationary �rst-order Gamma-GED-EGARCH model de�ne

a = φ� κυ

b = φ2 � 2φκυ+ κ2υ2(υ+ 1)

c = �κυ2.

For a given value of υ and provided that b < 1, eψ is consistent and
asymptotically normal.
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Gamma-GED-EGARCH

For a Gaussian conditional distribution, υ = 2 and so
b = φ2 � 4φκ + 12κ2 and a = φ� 2κ. Hence b > a2, whereas for the
Gaussian location model b = a2. These expressions for a and b are also
given by letting ν ! ∞ in for the t distibution.
For the Laplace , υ = 1 and b = φ2 � 2φκ + 2κ2, which, perhaps
surprisingly, permits a wider range for κ than does the normal, even
though (or perhaps because) the Laplace distribution has heavier tails.
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Figure: b against κ for φ = 0.98 and (i) t � distribution with ν = 6 (solid), (ii)
normal (upper line), (iii) Laplace (thick dash).
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Leverage e¤ects

The standard way of incorporating leverage e¤ects into GARCH models is
by including a variable in which the squared observations are multiplied by
an indicator, I (yt < 0). GJR. In the Beta-t-EGARCH model this
additional variable is constructed by multiplying (ν+ 1)bt = ut + 1 by
I (yt < 0).
Alternatively, the sign of the observation may be used, so

λt pt�1 = δ+ φλt�1pt�2 + κut�1 + κ�sgn(�yt�1)(ut�1 + 1)

and hence λt pt�1 is driven by a MD.
(Taking the sign of minus yt means that κ� is normally non-negative for
stock returns.)
Results on moments, ACFs and asymptotics may be generalized to
cover leverage.
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Application of Beta-t-EGARCH to Hang Seng and
Dow-Jones

Dow-Jones from 1st October 1975 to 13th August 2009, giving T = 8548
returns.
Hang Seng from 31st December 1986 to 10th September 2009, giving
T = 5630.
As expected, the data have heavy tails and show strong serial correlation
in the squared observations.
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Hang Seng DOW-JONES
Estimates (SE) Asy. SE Estimates (SE) Asy. SE

δ 0.006 (0.002) 0.0018 -0.005 (0.001) 0.0026
φ 0.993 (0.003) 0.0017 0.989 (0.002) 0.0028

κ 0.093 (0.008) 0.0073 0.060 (0.005) 0.0052
κ� 0.042 (0.006) 0.0054 0.031 (0.004) 0.0038
ν 5.98 (0.45) 0.355 7.64 (0.56) 0.475

a .931 .946
b .876 .898
Estimates with numerical and asymptotic standard errors
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Numerical and ASEs are the similar. b < 1.
Graph- Dow-Jones absolute (de-meaned) returns around the great crash of
October 1987, together with estimated conditional standard deviations for
Beta-t-EGARCH and GARCH-t, both with leverage.
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Explanatory variables for volatility

Andersen and Bollerslev (1998) - intra-day returns with explanatory
variables eg time of day e¤ects
Beta-t-EGARCH model is

yt = εt exp(λt pt�1/2), t = 1, ..,T ,

where

λt pt�1 = w0tγ+λ†
t pt�1,

λ†
t pt�1 = φ1λ

†
t�1pt�2 + κut�1

No pre-adjustments needed.
Asymptotics work and extend to time-varying trends and seasonals
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Asymptotic theory with explanatory variables

A non-zero location can be introduced into the t-distribution without
complicating the asymptotic theory.
More generally the location may depend linearly on a set of static
exogenous variables,

yt = x0tβ+ εt exp(λt pt�1/2), t = 1, ....,T ,

in which case the ML estimators of β are asymptotically independent of
the estimators of ψ and ν.
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Components

Engle and Lee (1999) proposed a GARCH model in which the variance is
broken into a long-run and a short-run component. The main role of the
short-run component is to pick up the temporary increase in variance after
a large shock. Another feature of the model is that it can approximate
long memory behaviour.
EGARCH models can be extended to have more than one component:

λt pt�1 = ω+ λ1,t pt�1 + λ2,t pt�1

where

λ1,t pt�1 = φ1λt�1pt�2 + κ1ut�1
λ2,t pt�1 = φ2λt�1pt�2 + κ2ut�1

Formulation - and properties - much simpler. Asymptotics hold for ML.
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Stochastic location and stochastic scale

The Student t model for time-varying location may be combined with one
for the scale.

yt = ω+ µt jt�1 + exp(λt jt�1)εt
µt+1jt = φµµt jt�1 + κµuµt ,

λt+1pt = δ+ φλλt pt�1 + κλuλt

where

uµt =

 
1+

(yt � µt jt�1)
2

νe2λt jt�1

!�1
(yt � µt jt�1)

and the score in Beta-t-EGARCH becomes

uλt =
(ν+ 1)(yt � µt jt�1)

2

ν exp(2λt pt�1) + (yt � µt jt�1)
2 � 1
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Stochastic location and stochastic scale: US in�ation

Seasonally adjusted rate of in�ation in the United States. The rate of
in�ation is often taken to follow a random walk plus noise and so the
estimator of the level is an exponentially weighted moving average of
current and past observations. Thus

µt+1jt = µt jt�1 + κµvt ,

Fitting a Gaussian model with the STAMP8 package of Koopman et al
(2007), gives an estimate of 0.579 for the parameter corresponding to κµ.
The plot of the �ltered level, µt+1jt , shows it to be sensitive to extreme
values, while the ACF of the absolute values of the residuals provides
strong evidence of serial correlation in variance.
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Stochastic location and stochastic scale: US in�ation

ML estimates (with standard errors in parentheses):
for location eκµ = 0.699(0.097),
for scale eδ = �0.370(0.214), eφ = 0.912(0.051), eκ = 0. 118(0.041)
and eν = 11.71(4.58).
The �ltered estimates respond less to extreme values than those from the
homoscedastic Gaussian model.
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Tests

A Lagrange multiplier test for changing volatility in a Beta-t-EGARCH
model can be carried out with the Qu(P) statistic. The variables used to
construct the sample autocorrelations, ru(j), j = 1, 2, ...., will be written as

eyt (λ) = (eν+ 1)(yt � eµ)2eν exp(2eλ) + (yt � eµ)2 � 1, t = 1, ....,T ,

where eµ, eλ and eν are the ML estimators of the location, scale parameter
and the degrees of freedom in the t�distribution. If the location is
modeled as a function of exogenous explanatory variables, the distribution
of the test statistic is not a¤ected. The ML estimators, eµ, eλ and eν, are
nonlinear, but they can be computed by an iterative procedure, such as the
method of scoring. A test statistic constructed from the score variables
will be more resistant to outliers than the conventional statistic
constructed from the squares (obtained as ν ! ∞).
Martingale di¤erence test. Modify as in Lobato et al (2001).
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Skew-t

Harvey and Sucarrat (CWPE, 2012) report results of �tting a
Beta� skew � t � EGARCH model with two components and leverage.

Analytic results on moments. preditions and asymptotic theory carry over
to this case.
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Conclusions on volatility models

Is specifying the conditional variance in a GARCH-t model as a linear
combination of past squared observations appropriate? The score of the
t-distribution is an alternative to squared observations.
**
The score transformation can also be used to formulate an equation for
the logarithm of the conditional variance, in which case no restrictions are
needed to ensure that the conditional variance remains positive.
**
Since the score variables have a beta distribution, we call the model
Beta-t-EGARCH. The transformation to beta variables means that all
moments of the observations exist when the equation de�ning the
logarithm of the conditional variance is stationary.

Andrew Harvey (Cambridge University) Volatility and Heavy Tails
November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB . For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 103

/ 107

Conclusions on volatility models

Furthermore, it is possible to obtain analytic expressions for the kurtosis
and for the autocorrelations of powers of absolute values of the
observations.
**
Volatility can be nonstationary, but an attraction of the EGARCH model is
that, when the logarithm of the conditional variance is a random walk, it
does not lead to the variance collapsing to zero almost surely, as in
IGARCH.
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Conclusions on volatility models

Closed form expressions may be obtained for multi-step forecasts of
volatility from Beta-t-EGARCH models, including nonstationary models
and those with leverage.There is a closed form expression for the mean
square error of these forecasts. (Or indeed the expectation of any power).
**
When the conditional distribution is a GED, the score is a linear function
of absolute values of the observations raised to a positive power. These
variables have a gamma distribution and the properties of the model,
Gamma-GED-EGARCH, can again be derived. For a Laplace distribution,
it is equivalent to the standard EGARCH speci�cation.
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Conclusions on volatility models

Beta-t-EGARCH and Gamma-GED-GARCH may both be modi�ed to
include leverage e¤ects.
**
ML estimation of these EGARCH models seems to be relatively
straightforward, avoiding some of the di¢ culties that can be a feature of
the conventional EGARCH model.
**
Unlike EGARCH models in general, a formal proof of the asymptotic
properties of the ML estimators is possible. The main condition is that the
score and its �rst derivative are independent of the TVP and hence
time-invariant as in the static model.
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Conclusions on volatility models

Extends to
(1) Two-component model;
(2) Explanatory variables in the level or scale.
(3) Higher-order models.
(4) Nonstationary components
(5) Skew distributions
**
Class of DCS models includes changing location and changing
scale/location in models for non-negatitve variables.
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