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Course outline

These lectures will introduce a new class of time series models that are
particularly important for modelling volatility.
The main applications are in �nancial econometrics, but some of the
techniques are also relevant to macroeconometrics.

Lecture 1: a) Introduction. Models for changing scale and location.
GARCH and EGARCH. Dynamic conditional score

(DCS) models.
b) Gamma and beta distributions and their relation to

Student�s t and the general error distribution.
Maximum likelihood estimation of DCS models.
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Course outline

Lecture 2: a) Dynamic location. Outliers and robustness. Trend and
seasonality. Smoothing.

b) Dynamic volatility. Beta-t-EGARCH models.
Leverage e¤ects.

Long memory and components. Application to stock
returns.

Lecture 3: a) Location/scale models for non-negative variables.
Application to intra-day data.

b) Multivariate models. Changing location, scale and
correlation. Dynamic copulas.
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Introduction: Dynamic Conditional Score (DCS) Models

1) A uni�ed and comprehensive theory for a class of nonlinear time series
models in which the conditional distribution of an observation may be
heavy-tailed and the location and/or scale changes over time.
2) The de�ning feature of these models is that the dynamics are
driven by the score of the conditional distribution. (Score = �rst
derivative of log-density wrt changing parameter)
3) When a suitable link function is employed for the dynamic parameter,
analytic expressions may be derived for (unconditional) moments,
autocorrelations and moments of multi-step forecasts.
4) Furthermore a full asymptotic distribution theory for maximum
likelihood estimators can be obtained, including analytic expressions for
the asymptotic covariance matrix of the estimators.
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Introduction: Dynamic Conditional Score (DCS) Models

The class of DCS models includes:
(i) standard linear time series models observed with an error which may be
subject to outliers,
(ii) models which capture changing conditional variance, and
models for non-negative variables.
The last two of these are of considerable importance in �nancial
econometrics.
(a) Volatility - Exponential GARCH (EGARCH)
(b) Duration (time between trades) and volatility as measured by range
and realised volatility - Gamma, Weibull, logistic and F-distributions with
changing scale and exponential link functions,
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Introduction: Dynamic Conditional Score (DCS) Models

A guiding principle is signal extraction. When combined with basic ideas
of maximum likelihood estimation, the signal extraction approach leads to
models which, in contrast to many in the literature, are relatively simple in
their form and yield analytic expressions for their principal features.
For estimating location, DCS models are closely related to the unobserved
components (UC) models described in Harvey (1989). Such models can be
handled using state space methods and they are easily accessible using the
STAMP package of Koopman et al (2009).
For estimating scale, the models are close to stochastic volatility (SV)
models, where the variance is treated as an unobserved component. The
close ties with UC and SV models provides insight into the structure of the
DCS models, particularly with respect to modeling trend and seasonality,
and into possible restrictions on the parameters.
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Unobserved component models

A simple Gaussian signal plus noise model is

yt = µt + εt , εt � NID
�
0, σ2ε

�
, t = 1, ...,T

µt+1 = φµt + ηt , ηt � NID(0, σ2η),
where the irregular and level disturbances, εt and ηt , are mutually
independent. The AR parameter is φ, while the signal-noise ratio,
q = σ2η/σ2ε , plays the key role in determining how observations should be
weighted for prediction and signal extraction.
The reduced form (RF) is an ARMA(1,1) process

yt = φyt�1 + ξt � θξt�1, ξt � NID
�
0, σ2

�
,

but with restrictions on θ. For example, when φ = 1, 0 � θ � 1. The
forecasts from the UC model and RF are the same.
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Unobserved component models

The UC model is e¤ectively in state space form (SSF) and, as such, it may
be handled by the Kalman �lter (KF). The parameters φ and q can be
estimated by ML, with the likelihood function constructed from the
one-step ahead prediction errors.
The KF can be expressed as a single equation. Writing this equation
together with an equation for the one-step ahead prediction error, vt , gives
the innovations form (IF) of the KF:

yt = µt jt�1 + vt
µt+1jt = φµt jt�1 + ktvt

The Kalman gain, kt , depends on φ and q.
In the steady-state, kt is constant. Setting it equal to κ and re-arranging
gives the ARMA(1,1) model with ξt = vt and φ� κ = θ.
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Outliers

Suppose noise is from a heavy tailed distribution, such as Student�s t.
Outliers.
The RF is still an ARMA(1,1), but allowing the ξ 0ts to have a heavy-tailed
distribution does not deal with the problem as a large observation becomes
incorporated into the level and takes time to work through the system.
An ARMA models with a heavy-tailed distribution is designed to handle
innovations outliers, as opposed to additive outliers. See the robustness
literature.
But a model-based approach is not only simpler than the usual robust
methods, but is also more amenable to diagnostic checking and
generalization.
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Unobserved component models for non-Gaussian noise

Simulation methods, such as MCMC, provide the basis for a direct attack
on models that are nonlinear and/or non-Gaussian. The aim is to extend
the Kalman �ltering and smoothing algorithms that have proved so
e¤ective in handling linear Gaussian models. Considerable progress has
been made in recent years; see Durbin and Koopman (2012).
But simulation-based estimation can be time-consuming and subject to a
degree of uncertainty.
Also the statistical properties of the estimators are not easy to establish.
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Observation driven model based on the score

The DCS approach begins by writing down the distribution of the t � th
observation, conditional on past observations. Time-varying parameters
are then updated by a suitably de�ned �lter. Such a model is observation
driven, as opposed to a UC model which is parameter driven. (Cox�s
terminology). In a linear Gaussian UC model, the KF is driven by the one
step-ahead prediction error, vt . The DCS �lter replaces vt in the KF
equation by a variable, ut , that is proportional to the score of the
conditional distribution.
The IF becomes

yt = µt jt�1 + vt , t = 1, ...,T

µt+1jt = φµt jt�1 + κut

where κ is an unknown parameter.
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Why the score ?

If the signal in AR(1)+noise model were �xed, that is φ = 1 and σ2η = 0,
µt+1 = µ, the sample mean, bµ, would satisfy the condition

T

∑
t=1
(yt � bµ) = 0.

The ML estimator is obtained by di¤erentiating the log-likelihood function
with respect to µ and setting the resulting derivative, the score, equal to
zero. When the observations are normal, ML estimator is the same as the
sample mean, the moment estimator.
For a non-Gaussian distribution, the moment estimator and the ML
estimator di¤er. Once the signal in a Gaussian model becomes dynamic,
its estimate can be updated using the KF. With a non-normal distribution
exact updating is no longer possible, but the fact that ML estimation in
the static case sets the score to zero provides the rationale for replacing
the prediction error, which has mean zero, by the score, which for each
individual observation, also has mean zero.
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Why the score ?

The use of the score of the conditional distribution to robustify the KF
was originally proposed by Masreliez (1975). However, it has often been
argued that a crucial assumption made by Masreliez (concerning the
approximate normality of the prior at each time step) is, to quote Schick
and Mitter (1994), �..insu¢ ciently justi�ed and remains controversial.�
Nevertheless, the procedure has been found to perform well both in
simulation studies and with real data.
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Why the score ?

(1) The attraction of treating the score-driven �lter as a model in its own
right is that it becomes possible to derive the asymptotic distribution of
the ML estimator and to generalize in various directions.
(2) The same approach can then be used to model scale, using an
exponential link function, and to model location and scale for non-negative
variables.
(3) The justi�cation for the class of DCS models is not that they
approximate corresponding UC models, but rather that their statistical
properties are both comprehensive and straightforward.
(4) An immediate practical advantage is seen from the response of the
score to an outlier.
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Dynamic location model

yt = ω+ µt jt�1 + vt = ω+ µt jt�1 + exp(λ)εt ,

µt+1jt = φµt jt�1 + κut ,

where εt is serially independent, standard t-variate and

ut =

 
1+

(yt � µt jt�1)
2

νe2λ

!�1
vt ,

where vt = yt � µt jt�1 is the prediction error and ϕ = exp(λ) is the
(time-invariant) scale.
Further details in Harvey and Luati (2012).
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Figure: Impact of ut for tν (with a scale of one) for ν = 3 (thick), ν = 10 (thin)
and ν = ∞ (dashed).
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Volatility models: GARCH

Standard approach is GARCH(1,1).

yt = σt jt�1zt , zt v NID (0, 1)
with conditional variance

σ2t jt�1 = γ+ βσ2t�1jt�2 + αy2t�1, γ > 0, β � 0, α � 0

or
σ2t jt�1 = γ+ φσ2t�1jt�2 + ασ2t�1jt�2ut�1, φ = α+ β,

where
ut�1 = y2t�1/σ2t�1jt�2 � 1

is a martingale di¤erence (MD). Weakly stationary if φ < 1.
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Volatility models: SV

Observation driven models - parameter(s) of conditional distribution are
functions of past observations. Contrast with parameter driven, eg
stochastic volatility (SV) models
The variance in SV models is driven by an unobserved process. The
�rst-order model is

yt = σt εt , σ2t = exp (λt ) , εt � IID (0, 1)

λt+1 = δ+ φλt + ηt , ηt � NID
�
0, σ2η

�
with εt and ηt mutually independent.
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Independence, uncorrelatedness and martingale di¤erences

ACFs of observations for some series, such as stock returns, and their
squares show only serial correlation in the squares. The observations are
uncorrelated but not independent. When this is the case, future
observations may or may not be predictable.

Example
The observations in the model

yt = εt + βεt�1εt�2, ε0 = ε�1 = 0, t = 1, ...,T

are serially uncorrelated, but the one-step ahead prediction is not zero.
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When is White Noise not White Noise ?

(a) WN - uncorrelated i.e. E (ytys ) = 0 if t 6= s (and mean is 0).
Constant variance
(b) Strict WN - independent
N.B. Strict WN implies WN (provided that variance is �nite)

WN + Gaussianity is strict WN
For WN there may be a non-trivial (nonlinear) predictor.
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When is White Noise not White Noise ?

(c) Martingale Di¤erence (MD)

E
t�1
(yt ) = E (yt j Yt�1) = 0

It is also necessary that E jyt j < ∞.
By law of iterated expectations (LIE)

E (yt ) = E [E (yt j Yt�1)] = 0

yt is uncorrelated with any function of past observations as

E [yt f (Yt�1) j Yt�1] = f (Yt�1)E (yt j Yt�1) = 0

and so unconditional expectation of yt f (Yt�1) is 0
1. All MD�s are serially uncorrelated, but not converse (WN if variance
constant)
2. All zero mean independent sequences are MDs but not converse.
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Volatility: GARCH-t

Stock returns are known to be non-normal
(i) Assume that zt has a Student tν-distribution, where ν denotes degrees
of freedom - GARCH-t model.
(ii) The t-distribution is employed in the predictive distribution of returns
and used as the basis for maximum likelihood (ML) estimation of the
parameters, but it is not acknowledged in the design of the equation for
the conditional variance.
(iii) The speci�cation of the σ2t jt�1 as a linear combination of squared

observations is taken for granted, but the consequences are that σ2t jt�1
responds too much to extreme observations and the e¤ect is slow to
dissipate.
(iv) Note that QML estimation procedures do not question this linearity
assumption.
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Volatility: Exponential GARCH (EGARCH)

In the EGARCH model (Nelson, 1991)

yt = σt jt�1zt , zt is IID(0, 1),

with �rst-order dynamics

ln σ2t jt�1 = δ+ φ ln σ2t�1jt�2 + θ(jzt�1j � E jzt�1j) + θ�zt�1

The role of zt is to capture leverage e¤ects.
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Volatility: EGARCH

Weak and covariance stationary if jφj < 1. More general in�nite MA
representation. Moments of σ2t jt�1 and yt exist for the GED(υ)
distribution with υ > 1. The normal distribution is GED(2).
Two major problems:
(a) If zt is tν distributed, the conditions needed for the existence of the
moments of σ2t jt�1 and yt are rarely (if ever) satis�ed in practice.
(b) No asymptotic theory for ML. See reviews by Linton (2008) and
Zivot (2009). For GARCH there is no comprehensive theory.
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DCS Volatility Models

What does the assumption of a tν-distribution imply about the
speci�cation of an equation for the conditional variance?
The possible inappropriateness of letting σ2t jt�1 be a linear function of past
squared observations when ν is �nite becomes apparent on noting that, if
the variance were constant, the sample variance would be an ine¢ cient
estimator of it.
Therefore replace ut in the conditional variance equation

σ2t+1jt = γ+ φσ2t jt�1 + ασ2t jt�1ut ,

by another MD

ut =
(ν+ 1)y2t

(ν� 2)σ2t jt�1 + y2t
� 1, �1 � ut � ν, ν > 2.

which is proportional to the score of the conditional distribution.
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Exponential DCS Volatility Models

yt = εt exp(λt pt�1/2), t = 1, ....,T ,

where the serially independent, zero mean variable εt has a tν�distribution
with degrees of freedom, ν > 0, and the dynamic equation for the log of
scale is

λt pt�1 = δ+ φλt�1pt�2 + κut�1.

The conditional score is

ut =
(ν+ 1)y2t

ν exp(λt jt�1) + y2t
� 1, �1 � ut � ν, ν > 0

NB The variance is equal to the square of the scale, that is
(ν� 2)σ2t jt�1/ν for ν > 2.
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Figure: Impact of ut for tν with ν = 3 (thick), ν = 6 (medium dashed) ν = 10
(thin) and ν = ∞ (dashed).
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Beta-t-EGARCH

The variable ut may be expressed as

ut = (ν+ 1)bt � 1,

where

bt =
y2t /ν exp(λt pt�1)

1+ y2t /ν exp(λt pt�1)
, 0 � bt � 1, 0 < ν < ∞,

is distributed as Beta(1/2, ν/2), a Beta distribution. Thus the u0ts are
IID.
Since E (bt ) = 1/(ν+ 1) and Var(bt ) = 2ν/f(ν+ 3)(ν+ 1)2g, ut has
zero mean and variance 2ν/(ν+ 3).
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Beta-t-EGARCH

1) Moments exist and ACF of jyt jc , c � 0, can be derived.
2) Closed form expressions for moments of multi-step forecasts of volatility
can be derived and full distribution easily simulated.
3) Asymptotic distribution of ML estimators with analytic expressions for
standard errors.
4) Can handle time-varying trends (eg splines) and seasonals (eg time of
day or day of week).
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Gamma�GED-EGARCH

When the conditional distribution of yt has a GED(υ) distribution, ut is a
linear function of jyt jυ . These variables can be transformed so as to have
a gamma distribution and the properties of the model are again derived.
The normal distribution is a special case of the GED, as is the double
exponential, or Laplace, distribution. The conditional variance equation for
the Laplace model has the same form as the conditional variance equation
in the EGARCH model of Nelson (1991).
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Figure: Impact of ut for GED with υ = 1 (thick), υ = 0.5 (thin) and υ = 2
(dashed).
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Non-negative variables: duration, realized volatility and
range

Many variables, particularly those associated with intra-day �nancial data,
are intrinsically non-negative. Examples include the time between trades,
the range of a price over a day and realized volatility; see Brownlees and
Gallo (2010). Distributions appropriate for non-negative variables include
the gamma, Weibull, Burr and F .
As a rule, the location and scale for such distributions are closely
connected, usually depending on the same parameter. If the location/scale
is to change over time, the use of an exponential link function ensures that
it remains positive. The unobserved components model is then

yt = εt exp(λt ), 0 � yt < ∞, t = 1, ....,T ,

where λt = ln µt depends on a disturbance term, ηt , which may or may
not be correlated with the IID variable, εt .
In the �rst-order model

λt+1 = δ+ φλt + ηt , ηt � NID
�
0, σ2η

�
;
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Non-negative variables: unobserved component model

Taking logarithms, that is

ln yt = λt + ln εt , t = 1, ....,T ,

gives a linear state space form.
For some variables, like the logarithm of range, QML estimation using the
Kalman �lter may reasonably good because ln εt is often close to a normal
distribution.
Nevertheless e¢ cient estimation usually requires the use of
simulation-based methods.
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Non-negative variables: duration, realized volatility and
range

Multiplicative error models (MEMs) provide an observation-driven
approach for dynamic non-negative variables; see Russell and Engle (2010)
for a recent survey. In these models, the conditional mean, µt pt�1, and
hence the conditional scale, is a linear function of past observations. The
model can be written

yt = εtµt pt�1, 0 � yt < ∞, t = 1, ....,T ,

µt+1pt = δ+ βµt pt�1 + αyt , δ, α, β > 0

where εt has a distribution with mean one. The emphasis in early work
was on the gamma and Weibull distributions, both of which include the
exponential distribution as a special case.
An exponential link function, µt pt�1 = exp(λt pt�1) ensures that µt pt�1 is
positive. Exponential link functions have been studied and applied by
Brandt and Jones (2006) and others.
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Non-negative variables: DCS models

It is the combination of the exponential link function with the conditional
score that facilitates the development of an asymptotic distribution theory
and enables comprehensive expressions for the moments, autocorrelations
and forecasts to be derived.
The practical implication is that the conditional score for a heavy-tailed
distribution will give extreme observations less weight than they would
receive in the standard MEM framework.
It is not always convenient to de�ne εt so that its mean is one. For many
purposes it is better to work with a measure of scale and to set its
logarithm equal to λt pt�1. Since scale and location only di¤er by a factor
of proportionality, the statistical properties of parameters estimated with
an exponential link function are essentially unchanged.
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Non-negative variables: DCS models

The model can be written

yt = εt exp(λt pt�1), t = 1, ....,T ,

λt+1jt = (1� φ)ω+ φλt jt�1 + κut , jφj < 1,
where ω is the unconditional mean of λt pt�1 and exp(λt pt�1) is equal to a
measure of scale, with the distribution of εt standardized accordingly.
The dynamics are driven by the (standardized) score, ut .
The score is linear for a gamma distribution, but exteme observations are
discounted when the conditional distribution has a heavy tail.
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Figure: Impact of u for a log-logistic distribution and a gamma (dashed), with
shape parameters ν = 3 and γ = 2 respectively.
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Generalized gamma and beta distributions

The statistical theory of DCS models for non-negative variables is
simpli�ed by the fact that for the gamma and Weibull distributions the
score and its derivatives are dependent on a gamma variate, while for the
Burr, log-logistic and F-distributions the dependence is on a beta variate.
(1) Gamma and Weibull distributions are special cases of the generalized
gamma distribution.
(2) Burr and log-logistic distributions are special cases of the generalized
beta distribution.
The F�distribution is related to the generalized beta distribution
Members of the generalized beta class are particularly useful in situations
where there is evidence of heavy tails.
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Multivariate models

The DCS location model is

yt= ω+ µt jt�1+νt, νt � tν (0,Ω) , t = 1, ...,T

µt+1jt=Φµt jt�1+Kut .

Asymptotic theory relatively straightforward. Constraints for common
trends and other factors similar to UC models - Harvey (1989, ch 8).
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Multivariate models

yt= ω+ νt, νt � tν (0, Ωt pt�1)

A direct extension of Beta-t-EGARCH to model changing scale, Ωt pt�1, is
di¢ cult. Matrix exponential is Ωt pt�1 = expΛt pt�1. As a result, Ωt pt�1 is
always p.d. and if Λt pt�1 is symmetric then so is ·t pt�1; see Kawakatsu
(2006, JE). Unfortunately, the relationship between the elements of Ωt pt�1
and those of Λt pt�1 is hard to disentangle. Can�t separate scale from
association.
Issues of interpretation aside, di¤erentiation of the matrix exponential is
needed to obtain the score and this is not straightforward.
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Multivariate models for changing scale

A better way forward is to follow the approach in Creal, Koopman and
Lucas (2011, JBES) and let

Ωt pt�1 = Dt pt�1Rt pt�1Dt pt�1,

where Dt pt�1 is diagonal and Rt pt�1 is a pd correlation matrix with
diagonal elements equal to unity. An exponential link function can be used
for the volatilities in Dt pt�1.
Changing correlations in Rt pt�1.
The condititional score also provides guidance on dynamics for a copula -
Creal et al (2012, JAE ).

Andrew Harvey (Cambridge University) Volatility and Heavy Tails
November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 47

/ 94

Distributions
Student�s t distribution

The tν-distribution with a location of µ and scale of ϕ has probability
density function (PDF)

f (y ; µ, ϕ, ν) =
Γ ((ν+ 1) /2)
Γ (ν/2) ϕ

p
πν

�
1+

(y � µ)2

νϕ2

��(ν+1)/2
, ϕ, ν > 0,

where ν is the degrees of freedom and Γ (.) is the gamma function.
Moments exist only up to and including ν� 1.
For ν > 2, the variance is

σ2 = fν/ (ν� 2)g ϕ2.

The excess kurtosis, that is the amount by which the normal distribution�s
kurtosis of three is exceeded, is 6/(ν� 4), provided that ν > 4.
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Distributions
Student�s t distribution

The Cauchy distribution is t1 and famously has no moments. Its PDF is

f (y) =
1

πϕ

�
1+

(y � µ)2

ϕ2

��1
.

The standardized PDF, that is µ = 0 and ϕ = 1, is plotted together with
that of the normal in Figure . The tails of the Cauchy distribution are
much heavier than those of the normal.
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Figure: Cauchy (thick line) and Gaussian distributions
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When observations are from a tν-distribution in which ν is small, the
sample mean is a very ine¢ cient estimator of µ. For example with ν = 3,
the e¢ ciency is one-half. The sample variance is even more ine¢ cient.
Speci�cally

E¤ (variance) = (ν+ 3)(ν� 4)/fν(ν� 1)g, ν > 4.
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Distributions
General error distribution (GED)

The PDF of the general error distribution, denoted GED(υ), is

f (y ; µ, ϕ, υ) =
h
21+1/υ ϕΓ(1+ 1/υ)

i�1
exp(� j(y � µ)/ϕjυ /2), ϕ, υ > 0,

where ϕ is a scale parameter, related to the standard deviation by the
formula

σ = 21/υ(Γ (3/υ) /Γ (1/υ))1/2ϕ,

and υ is a tail-thickness parameter.
Figure shows the standardized (ϕ = 1) PDF for υ = 1.5 and υ = 1, the
second these being the double exponential or Laplace distribution. The
normal distribution is obtained when υ = 2, in which case σ = ϕ.
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Distributions
Beta distribution

When b has a beta(α, β) distribution, the PDF is

f (b) =
1

B(α, β)
bα�1(1� b)β�1, 0 � b � 1, α, β > 0,

where B(α, β) = Γ(α)Γ(β)/Γ(α+ β) is the beta function.
Lemma When b has a beta(α, β) distribution and w(b) is a function of b
with �nite expectation,

E [bh(1� b)kw(b)] = B(α+ h, β+ k)
B(α, β)

E [w(b)], h > �α, k > �β,

where the expectation on the right hand side is now understood to be with
respect to a beta(α+ h, β+ k) distribution.
Note that

E (bh(1� b)k ) = B(α+ h, β+ k)
B(α, β)

, h > �α, k > �β

and the moments are obtained by setting k = 0.
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Distributions
Beta distribution

The moment generating function (MGF) of a beta distribution plays a key
role in deriving results in later chapters. Suppose b has a beta(α, β)
distribution and c is a �nite number. Then

Mβ(c ; α, β) = E (e
cb) = 1+

∞

∑
k=1

 
k�1
∏
r=0

α+ r
α+ β+ r

!
ck

k !
, α, β > 0.

The above expression is Kummer�s (con�uent hypergeometric) function,
1F1(α; β; c).
Finally note that when b has a beta(α, β) distribution, the distribution of
1� b is beta(β, α).

Andrew Harvey (Cambridge University) Volatility and Heavy Tails
November 2012 . Econometric Society Monograph, No. 52 Cambridge University Press to appear April 2013. http://www.cambridge.org/gb/knowledge /isbn/item7091594/?site_locale=en_GB For Table of contents and Chapter 1, see http://www.econ.cam.ac.uk/faculty/harvey/Pages-from-AHbook.pdf 55

/ 94

Distributions
Gamma distribution

The PDF of a gamma(α,γ) variable is

f (g) = α�γgγ�1e�g/α/Γ(γ), 0 � g < ∞, α,γ > 0,

where α is the scale parameter and γ is the shape parameter. The
chi-square distribution with ν degrees of freedom is gamma(2, ν/2).
Setting γ = 1 gives the exponential distribution.
The moments of all orders exist, with the raw moments given by

E (gh) = αhΓ(h+ γ)/Γ(γ), h > 0.

Hence the mean is γα, while the variance is γα2. The MGF is

M(c ; α,γ) = E (ecg ) = (1� αc)�γ, �∞ < c < 1/α, γ > 0.

There are a number of important connections between the gamma and
other distributions.
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Distributions
Gamma distribution

Lemma The expected value of the absolute value of a standardized
tν-variate, εt , raised to a power c is

E (jεt jc ) = νc/2Γ(c/2+ 1/2)Γ(�c/2+ ν/2)/(Γ(1/2)Γ(ν/2)), �1 < c < ν.

Lemma If z is gamma(θ, α) and w is gamma(θ, β), then
x = z/(w + z) is beta(α, β).
Lemma The variable (t2/ν)/(1+ t2/ν) has a beta(1/2, ν/2)
distribution, while 1/(1+ t2/ν) has a beta(ν/2, 1/2) distribution.
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Distributions
Gamma distribution

Lemma For the GED, j(y � µ)/ϕjυ has a gamma(2, 1/υ) distribution
The above result can be easily proved by change of variable. The next
result is immediate.
Corollary The expected value of the absolute value of a standardized
GED(υ) variate raised to a power c is

E (j(y � µ)/ϕjc ) = 2c/υΓ((c + 1)/υ)/Γ(1/υ), c > �1, υ > 0.

The above expression gives the even (central) moments of a GED variate.
The odd central moments are zero.
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Maximum likelihood (ML)

Let yt , t = 1, ...,T , be a set of time series observations, each of which is
drawn from a distribution with PDF f (yt ; θ), where θ is a vector of
parameters. When the observations are IID, the joint density function is
just the product of the individual density functions. The likelihood
function has the same form as the joint density function. It is more
convenient to work with its logarithm

ln L(θ;y1, .., yT ) =
T

∑
t=1
ln f (yt ; θ).

The likelihood function di¤ers from the joint density function in that the
observations are taken as given, while θ is variable. The aim is to �nd the
value of θ that makes the sample �most likely�. The global ML estimator,eθ, maximizes ln L(θ) over the full parameter space. Provided that ln L(θ)
is di¤erentiable at the true parameter value, eθ will be given by solving the
likelihood equations

∂ ln L(θ)
∂θ

= 0. (1)
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Maximum likelihood

The information matrix for a single observation is

I(θ0) = E0

�
∂ ln f

∂θ

∂ ln f
∂θ0

�
= �E0

�
∂2 ln f
∂θ∂θ0

�
, t = 1, ...,T , (2)

where the expectation is taken at the true value of θ, denoted θ0. The full
information matrix is T .I(θ0). Provided that f (yt ; θ) satis�es certain
regularity conditions, eθ is a consistent estimator of θ0 and it is
asymptotically normal in that

p
T (eθ� θ0) converges in distribution to a

multivariate normal with mean vector zero and covariance matrix I�1(θ0).
The information matrix is positive de�nite provided that the model is
identi�able.
The vector in (1) is called the score of the likelihood function and, as
such, is a function of θ for a given set of observations. The statistical
properties of DCS models are derived with respect to the score vector,
∂ ln f (yt ; θ)/∂θ, where the observations are random variables, just as they
are in the formulae for the information matrix, (2).
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Maximum likelihood

When observations are from a tν-distribution, the logarithm of the PDF,
the log-density, is

ln f (yt ; µ, ϕ, ν) = ln Γ ((ν+ 1) /2)� 1
2
lnπ � ln Γ (ν/2)

�1
2
ln ν� ln ϕ� (ν+ 1)

2
ln
�
1+

(yt � µ)2

νϕ2

�
.

The information matrix is

I

0@ µ
ϕ2

ν

1A =

264
ν+1
ν+3 ϕ�2 0 0
0 ν

2ϕ4(ν+3)
1

2ϕ2(ν+3)(ν+1)

0 1
2ϕ2(ν+3)(ν+1) h(ν)/2

375 ,
where

h(ν) =
1
2

ψ0 (ν/2)� 1
2

ψ0 ((ν+ 1)/2)� ν+ 5
ν (ν+ 3) (ν+ 1)

,

with ψ0 (.) being the trigamma function.
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Maximum likelihood

The parameter λ, where ϕ = exp(λ), will normally be employed here when
modeling dynamic scale. The information matrix is then

I

0@ µ
λ
ν

1A =

264
ν+1
ν+3 exp(�2λ) 0 0

0 2ν
ν+3

1
(ν+3)(ν+1)

0 1
(ν+3)(ν+1) h(ν)/2

375 ,
and a scale parameter no longer appears in the lower block. This feature
of the link function turns out to be of crucial importance.
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Maximum likelihood estimation of dynamic conditional
score models

In DCS models, some or all of the parameters are time-varying and the
distribution of yt is de�ned conditional on these parameters. For a single
time-varying parameter, the dynamics are driven by the conditional score
vector, ∂ ln `(θt pt�1; yt )/∂θt pt�1. A crucial requirement - though not the
only one - for establishing results on asymptotic distributions of ML
estimators of the parameters governing the movements in θt pt�1 is that it
does not appear in the expression for its information quantity. The
ful�llment of this condition may require a careful choice of link function.
1)Basic lemma on the information matrix
2) Information matrix for the �rst-order model.
3) Asymptotic distribution of the ML estimator
4) Nonstationarity
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An information matrix lemma

Suppose initially that there is just one parameter, θ, in a static model.
De�ne

ut = k.∂ ln f (yt ; θ)/∂θ, t = 1, ...,T ,

where k is a �nite constant which may be the information quantity.
The derivative ∂ ln f (yt ; θ)∂θ is a random variable which has zero mean at
the true parameter value, θ0. Hence ut has zero mean at θ = θ0 and its
variance, σ2u , is �nite under standard regularity conditions.
The information quantity for one observation is

I (θ0) = �E (∂2 ln f /∂θ2) = E [(∂ ln f /∂θ)2] = E (u2t )/k
2 = σ2u/k2 < ∞.

(3)
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An information matrix lemma

Now let θ = θt pt�1 evolve over time as a function of past observations and
past values of the score of the conditional distribution. Since the
conditional score depends on past observatons through θt pt�1, it can be
broken down into two parts:

∂ ln ft (yt j Yt�1;ψ)
∂ψ

=
∂ ln ft (yt ; θt pt�1)

∂θt pt�1

∂θt pt�1
∂ψ

, (4)

where the notation ft (yt ; θt pt�1) indicates that the distribution of yt
depends on the time-varying parameter, θt pt�1, and ψ denotes the vector
of parameters governing the dynamics. Since θt pt�1 and its derivatives
depend only on past information, the distribution of the score conditional
on information at time t � 1 is the same as its unconditional distribution
and so is time invariant.
The above decomposition of the conditional score leads to the following
result.
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An information matrix lemma

Consider a model with a single time-varying parameter, θt pt�1, which
satis�es an equation that depends on variables which are �xed at time
t � 1. The process is governed by a set of �xed parameters, ψ0. If the link
function is such that I (θ0) does not depend on θ0, then the conditional
score for the t�th observation, ∂ ln ft (yt j Yt�1;ψ)/∂ψ, is a MD at
ψ = ψ0, with conditional covariance matrix

Et�1

�
∂ ln ft (yt j Yt�1;ψ)

∂ψ

��
∂ ln ft (yt j Yt�1;ψ)

∂ψ

�0
= I .

�
∂θt pt�1

∂ψ

∂θt pt�1
∂ψ0

�
,

where the information quantitly, I , is constant over time and independent
of ψ.
Proof The fact that the score in (4) is a MD is con�rmed by the fact that
the derivative of the time-varying parameter, ∂θt pt�1/∂ψ, is �xed at time
t � 1 and the expected value of the score in the static model is zero.
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An information matrix lemma

Proof (contd) Write the outer product of (4) as�
∂ ln ft

∂θt pt�1

∂θt pt�1
∂ψ

��
∂ ln ft

∂θt pt�1

∂θt pt�1
∂ψ

�0
=

�
∂ ln ft

∂θt pt�1

�2 �∂θt pt�1
∂ψ

∂θt pt�1
∂ψ0

�
.

Now take expectations conditional on information at time t � 1. If
Et�1 (∂ ln ft/∂θt pt�1)

2 does not depend on θt pt�1, it is �xed and equal to
the unconditional expectation in the static model, that is (3). Therefore,
since θt pt�1 is �xed at time t � 1,

Et�1

"�
∂ ln ft

∂θt pt�1

∂θt pt�1
∂ψ

��
∂ ln ft

∂θt pt�1

∂θt pt�1
∂ψ

�0#
=

"
E
�

∂ ln ft
∂θ

�2# ∂θt pt�1
∂ψ

∂θt pt�1
∂ψ0 .

*****
The information matrix is obtained by �nding the unconditional
expectation on the last matrix.

I(ψ) = I .D(ψ), where D(ψ) = E
�

∂θt pt�1
∂ψ

∂θt pt�1
∂ψ0

�
.
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Information matrix for the �rst-order model

θt+1pt = δ+ φθt pt�1 + κut , jφj < 1, κ 6= 0, (5)

is the conventional formulation of a �rst-order dynamic model, but it turns
out that the information matrix takes a simpler form

θt+1pt = ω+ θ†
t+1pt , θ†

t+1pt = φθ†
t pt�1+ κut , t = 1, ...,T . (6)

Re-writing the above model in a similar way to (5) gives

θt+1pt = ω(1� φ) + φθt pt�1 + κut . (7)

where setting θ†
1p0 = 0 is the same as setting θ1p0 = ω.
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Information matrix for the �rst-order model

The complications arise because ut depends on θt pt�1 and hence on the
parameters in ψ. Di¤erentiating (6) and noting that
∂θt pt�1/∂κ = ∂θ†

t pt�1/∂κ, ∂θt pt�1/∂φ = ∂θ†
t pt�1/∂φ, but

∂θt pt�1/∂ω = 1+ ∂θ†
t pt�1/∂ω, the vector ∂θt+1pt/∂ψ becomes

∂θt+1pt
∂κ

= φ
∂θt pt�1

∂κ
+ κ

∂ut
∂κ
+ ut

∂θt+1pt
∂φ

= φ
∂θt pt�1

∂φ
+ κ

∂ut
∂φ

+ θt pt�1 �ω

∂θt+1pt
∂ω

= φ
∂θt pt�1

∂ω
+ κ

∂ut
∂ω

+ 1� φ.
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Information matrix for the �rst-order model

However,
∂ut
∂κ

=
∂ut

∂θt pt�1

∂θt pt�1
∂κ

,

and similarly for the other two derivatives. Therefore

∂θt+1pt
∂κ

= xt
∂θt pt�1

∂κ
+ ut (8)

∂θt+1pt
∂φ

= xt
∂θt pt�1

∂φ
+ θt pt�1 �ω

∂θt+1pt
∂ω

= xt
∂θt pt�1

∂ω
+ 1� φ,

where

xt = φ+ κ
∂ut

∂θt pt�1
, t = 1, ....,T .
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Information matrix for the �rst-order model

Assume that E (utu0t ) < ∞ and E (u02t ) < ∞ as well as E (u2t ) < ∞.
The following de�nitions are needed:

a = Et�1(xt ) = φ+ κEt�1

�
∂ut

∂θt pt�1

�
= φ+ κE

�
∂ut
∂θ

�
(9)

b = Et�1(x2t ) = φ2 + 2φκE
�

∂ut
∂θ

�
+ κ2E

�
∂ut
∂θ

�2
� 0

c = Et�1(utxt ) = κE
�
ut

∂ut
∂θ

�
Because the above expectations are time invariant the unconditional
expectations can replace conditional ones.
The following lemma is a pre-requisite for Theorem 1.
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Information matrix for the �rst-order model

Lemma When the process for θt pt�1 starts in the in�nite past and jaj < 1,

E
�

∂θt+1pt
∂κ

�
= 0, t = ...0, 1, ...,T , (10)

E
�

∂θt+1pt
∂φ

�
= 0,

E
�

∂θt+1pt
∂ω

�
=

1� φ

1� a .
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Information matrix for the �rst-order model

Proof Taking the conditional expectations of the �rst equation in (8) gives

Et�1

�
∂θt+1pt

∂κ

�
= Et�1

�
xt

∂θt pt�1
∂κ

+ ut

�
= a

∂θt pt�1
∂κ

+ 0

and, from the law of iterated expectations, the expectation at time t � 2 is
given by

Et�2Et�1

�
∂θt+1pt

∂κ

�
= aEt�2

�
∂θt pt�1

∂κ

�
= aEt�2

�
xt�1

∂θt�1pt�1
∂κ

+ ut�1

�
= a2

∂θt�1pt�2
∂κ

.

Hence, if jaj < 1,

lim
n!∞

Et�n

�
∂θt+1pt

∂κ

�
= 0, t = ...0, 1, ...,T .
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Information matrix for the �rst-order model

Proof (cont�d) As regards ω,

Et�1

�
∂θt+1pt

∂ω

�
= a

∂θt pt�1
∂ω

+ 1� φ. (11)

We can continue to evaluate this expression by substituting for
∂θt pt�1/∂ω, taking conditional expectations at time t � 2, and then
repeating this process. Once a solution has been shown to exist, the result
can be con�rmed by taking unconditional expectations in (11) to give

E
�

∂θt+1pt
∂ω

�
=
1� φ

1� a .
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Information matrix for the �rst-order model

Proof (cont�d) Similarly taking conditional expectations of ∂θt+1pt/∂φ at
time t � 1 gives

Et�1

�
∂θt+1pt

∂φ

�
= a

∂θt pt�1
∂φ

+ (θt pt�1 �ω)

and then the unconditional expectations yields

E
�

∂θt+1pt
∂φ

�
= 0, t = ...0, 1, ...,T .

The above Lemma requires that jaj < 1. The result on the information
matrix below requires b < 1 and ful�llment of this condition implies
jaj < 1. That this is the case follows directly from the Cauchy-Schwarz
inequality E (x2t ) � [E jxt j)]

2 .
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Information matrix for the �rst-order model: Theorem 1

Provided that b < 1,

I(ψ) = I .D(ψ) = (σ2u/k2)D(ψ), (12)

where

D(ψ) = D

0@ κ
φ
ω

1A =
1

1� b

24 A D E
D B F
E F C

35 (13)

with

A = σ2u , B =
κ2σ2u(1+ aφ)

(1� φ2)(1� aφ)
, C =

(1� φ)2(1+ a)
1� a ,

D =
aκσ2u
1� aφ

, E =
c(1� φ)

1� a and F =
acκ(1� φ)

(1� a)(1� aφ)
.
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Information matrix for the �rst-order model

Derivation of A is given to illustrate the method. This term is the
unconditional expectation of the square of the �rst derivative in (�). To
evaluate it, �rst take conditional expectations at time t � 1, to obtain

Et�1

�
∂θt+1pt

∂κ

�2
= Et�1

�
xt

∂θt pt�1
∂κ

+ ut

�2
= b

�
∂θt pt�1

∂κ

�2
+ 2c

∂θt pt�1
∂κ

+ σ2u . (14)

It follows from earlier Lemma that the unconditional expectation of the
second term is zero. Eliminating this term, and taking expectations at
t � 2 gives

Et�2

�
∂θt+1pt

∂κ

�2
= bEt�2

�
xt�1

∂θt�1pt�2
∂κ

+ ut�1

�2
+ σ2u

= b2
�

∂θt�1pt�2
∂κ

�2
+ 2cb

∂θt�1pt�2
∂κ

+ bσ2u + σ2u .
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Information matrix for the �rst-order model

Again the second term can be eliminated and it is clear that

lim
n!∞

Et�n

�
∂θt+1pt

∂κ

�2
=

σ2u
1� b .

Taking unconditional expectations in (14) gives the same result.
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Asymptotic theory for the �rst-order model

Theorem

The ML estimator of ψ, denoted eψ, is consistent and the limiting
distribution of

p
T (eψ�ψ0) multivariate normal with mean vector zero

and covariance matrix

Var(eψ) = I�1(ψ0) = I
�1D�1(ψ0). (15)

The interpretation is that eψ is approximately normal with mean ψ and

Avar(eψ) = T�1Var(eψ). (16)

The asymptotic standard error (ASE) of an element of eψ is the square
root of the corresponding diagonal element of Avar(eψ).
The proof follows along the lines of Jensen and Rahbek (ET, 2004), but
the details are much simpler. Assume that ln L is three times continuously
di¤erentiable for ψ, ψ0 is an interior point of the compact parameter
space, and the following are true.
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Asymptotic theory for the �rst-order model

(i) As T ! ∞, (1/
p
T )∂ ln L(ψ0)/∂ψ !N(0, I(ψ0)), where I(ψ0) is p.d.

(ii) As T ! ∞, (�1/T )∂2 ln L(ψ0)/∂ψ∂ψ0 P! I(ψ0)
(iii) If ψi , i = 1, .., n denote the parameters in ψ,

max
h,i ,j=1,...,n

sup
ψ2N (ψ0)

����� ∂3 ln L
T .∂ψh∂ψi∂ψj

����� � cT ,
where N(ψ0) is a neighbourhood of the true parameter value, ψ0, and

0 � cT
P! c , 0 < c < ∞.

It is not di¢ cult to show that (iii) holds for IID observations from
Student�s t as the score and its �rst two derivatives are bounded. The
argument is combined with the following result.
Proposition The �rst three derivatives of θt pt�1 wrt κ, φ and ω are
stochastic recurrence equations (SREs) and the condition b < 1 is
su¢ cient to ensure that they are strictly stationarity and ergodic at the
true parameter value.
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Tests

Before �tting a DCS model it is advisable to test whether time-variation is,
in fact, present. When a series is random, a �rst-order DCS model will not
be identi�able because the information matrix is singular. Even if a
numerical optimization procedure is coaxed into convergence, a Wald test
in which the null hypothesis is κ = 0 should not be carried out.
The Lagrange multiplier principle may be used to construct suitable
tests against serial correlation in the feature of interest by taking account
of the form of the conditional distribution posited for the dynamic model.
Such tests should be able to guard against low power as a consequence of
outliers.
After a model has been �tted, diagnostics tests may be constructed based
on similar principles. These tests may be complemented by procedures for
assessing the goodness of �t of the assumed conditional distribution.
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Serial correlation

The standard tests against serial correlation are based on the sample
autocorrelations, r(j) = c(j)/c(0), where

c(j) = T�1
T

∑
t=j+1

(yt � y)(yt�j � y), j = 0, 1, 2, ...

The portmanteau test uses the statistic

Q(P) = T
P

∑
j=1
r2(j),

where P is a non-zero integer; the Ljung-Box modi�cation is

QLB (P) = T (T + 2)
P

∑
τ=1
(T � τ)�1r2(τ).

Both Q(P) and QLB (P) are asymptotically χ2P when the observations are
independent. The weaker assumption that the observations are serially
uncorrelated is not su¢ cient.
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Serial correlation

The portmanteau test may be derived as a Lagrange multiplier (LM) test
against a Gaussian moving average process of order P. Similarly a DCS
test may be developed by considering the (0,P � 1) dynamic process

θt pt�1 = ω+ κ0ut�1 + ...+ κP�1ut�P , t = 1, ...,T ,

where ut is the score for the t � th observation.

Proposition
The LM test statistic for κ0 = κ1 = .... = κP�1 = 0 is the portmanteau
statistic

Qu(P) = T
P

∑
j=1
r2u (j), (17)

where ru(j) is the j � th sample autocorrelation of ut . The asymptotic
distribution of Qu(P) under the null hypothesis is χ2P .
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Proof For simplicity assume that k = 1; when k 6= 1, it cancels in the
�nal expression. We have

∂θt pt�1
∂κj

=
P

∑
i=1

κi�1
∂ut�i
∂κj

+ ut�j�1, j = 0, ...,P � 1,

but under the null hypothesis, when κ = (κ0, .., κP�1)0 = 0,

∂θt pt�1
∂κj

= ut�j�1, j = 0, ...,P � 1.

Hence

D(κ) = E
�

∂θt pt�1
∂κ

∂θt pt�1
∂κ0

�
= σ2uIP

and so
I(κ) = σ2uD(κ) = σ4uIP .
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Serial correlation

The result then follows from the standard LM formula, that is

LM =
∂ ln L
∂κ0

I�1(κ)
∂ ln L

∂κ
,

since

∂ ln ft
∂κj

=
∂ ln ft

∂θt pt�1

∂θt pt�1
∂κj

= utut�j�1, j = 0, 1, ...,P � 1

Estimation of �xed parameters, such as degrees of freedom or the
unconditional mean, makes no di¤erence to the form of the result.
Note that under the null hypothesis, the �rst-order condition,
∂ ln L/∂ω = 0, implies that ∑T

t=1 ut = 0 and so u = 0.
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Remark
The Ljung-Box statistic

Q�u (P) = T (T + 2)
P

∑
j=1
(T � j)�1r2u (j),

may also be used. The asymptotic distribution under the null hypothesis is
also χ2P .

Estimation of dynamic parameters will a¤ect the asymptotic distribution of
the portmanteau statistic constructed from residuals. The solution, as in
the Box-Pierce test, is to reduce the degrees of freedom by the number of
dynamic parameters estimated, that is p + q for when an ARMA(p, q)
model is �tted.
Another possibility is to develop LM tests.
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Serial correlation

It is not unusual to be faced with a situation where the serial correlation in
θt pt�1 is very persistent. In the �rst-order model, persistence means that
the parameter φ is close to one. In these circumstances a stationarity test,
such as the one proposed by Nyblom and Mäkeläinen (1983) or the more
general test of Kwiatkowski et al (1992) will tend to have higher power
than the portmanteau test; see the evidence in Harvey and Streibel (1998).
The test statistics could be constructed from conditional score variables.
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Goodness of �t of distributions

Assessing how well a particular conditional distribution �ts the data is an
important part of the methodology of DCS models. The goodness of �t of
a Gaussian distribution is routinely tested with the Bowman-Shenton
(Jarque-Bera) statistic which is based on sample skewness and kurtosis.
The fact that the test statistic consistes of two parts is helpful in
determining whether a rejection is based primarily on skewness or kurtosis.
More generally, goodness of �t is assessed by reference to the quantiles of
the assumed theoretical distribution. There are two approaches. The �rst
is based on the QQ plot, in which the T equally-spaced quantiles of the
comparison distribution are plotted on the vertical axis and the order
statistics of the sample, y(1) � y(2) � ...... � y(T ), are plotted on the
horizontal axis. If the sample comes from the comparison distribution, the
plot will approximate a straight 45 degree line.
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Goodness of �t of distributions

A second plot, which essentially presents the same information, but in a
di¤erent way, uses the probability integral transform (PIT). The PIT of a
variable is given by its CDF, that is PIT (y) = F (y). By construction, the
PIT has a standard uniformdistribution, that is the range is [0,1]. If the
PITs are not uniformly distributed, the shape of the histogram can be
informative. For example, a hump indicates that the forecasts are too
narrow and that the tails are not adequately represented. The hypothesis
that a set of T observations comes from a particular parametric
distribution can be tested using the Kolmogorov-Smirnov statistic

KSPIT = max
j

���PIT(j) � j/T ��� ,
where PIT(j), j = 1, ...,T denotes the ordered PIT (yt )0s. When
parameters have been estimated, the distribution of the
Kolmogorov-Smirnov statistic will normally have to be found by simulation.
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Goodness of �t of distributions

Example
The PIT of a variable that has an exponential distribution with mean θ is
simply

PIT (yt ) = F (yt ) =

ytZ
0

θ�1 exp(�x/θ)dx = 1� exp(�yt/θ).

Berkowitz (2001) suggests transforming the PITs to standard normal
variables using an algorithm for computing the inverse of the Gaussian
distribution function (the quantile function). This opens up a wide range
of tests appropriate for the normal distribution, including the
Bowman-Shenton test.
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Goodness of �t of distributions

Diebold et al (1998) discuss various ways in which the PITs may be used
to assess forecasting schemes. In the present context this means checking
model speci�cation using the PITs of the one-step ahead prediction errors.
For example, plots of the autocorrelation functions of the PITs, and of
their powers, may indicate the source of serial dependence.
Tests based on standardized residuals, their PITs and the normal variates
created from PITs o¤er three alternatives for diagnostic checking. Since
the variables are all transformations of each other, it is not clear which will
be preferable. Indeed the answer almost certainly depends on the assumed
distribution.
The �tting of DCS models also o¤ers a fourth possibility, namely the use
of the conditional scores. The conditional scores may be appropriate for
testing against serial correlation and in cases where they have a known
distribution comparing the empirical and theoretical distributions may be
valuable.
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Model �t

The overall �t of a model can be assessed in a number of ways. The
various criteria which are discussed here are generally applicable and so
can be used to compare DCS models with other models. It is assumed
that estimation is by maximum likelihood.
The maximized log-likelihood is the basic measure of goodness of �t, but
in order to compare di¤erent models an allowance is often made for the
number of parameters, n, estimated. The Akaike information criterion
(AIC) is de�ned as

AIC = �2 ln L(eψ) + 2n,
while the BIC has 2n replaced by n lnT .
Post-sample predictive testing may also be employed. The predictive
likelihood, sometimes called the log-score, is both simple and e¤ective; see
Mitchell and Wallis (2011). Looking at the post-sample PIts, residuals and
scores may also be useful.
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Explanatory variables

The changing parameter may depend on a set of observable explanatory
variables, denoted by the k � 1 vector wt , as well as on its own past values
and the score. The model can be set up as

θt pt�1 = w0tγ+θ†
t pt�1, t = 1, ...,T , (18)

where, in the �rst-order case,

θ†
t+1pt = φθ†

t pt�1 + κut , with θ†
1p0 = 0

The explanatory variables are strictly exogenous in the sense that they are
independent of the other variables in the model in all time periods.
The following result is a generalization of Theorem 1. A constant mean,
ω, is a special case, obtained when wt is a scalar equal to unity.
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Explanatory variables

Corollary Assume that the explanatory variables are weakly stationary
with mean µw and second moment Λw and are strictly exogenous. The
information matrix for model (18) is

I

0@ κ
φ
γ

1A =
σ2u

k2(1� b)

24 A D Eµ0w
D B Fµ0w
Eµw Fµw Cw

35 ,
where A,B,C ,D,E and F are as in (13) while

Cw = (1+ φ2)Λw � 2φΛw (1) +
2a(1� φ)2

1� a µwµ0w ,

with Λw (1) = E (wtw0t�1) = E (wt�1w
0
t ).
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